首页 理论教育 声发射产生的机制探析

声发射产生的机制探析

时间:2023-06-24 理论教育 版权反馈
【摘要】:引发声发射的材料局部变化称为声发射事件,而声发射源,是指声发射事件的物理源点或发生声发射波的机制源。在工程材料中,有许多种损伤与破坏机制可产生声发射源,声发射源类型如图2-1所示。图2-1 声发射源类型可以看出,声发射源涉及的范围非常广泛,这里我们着重讨论三种声发射源。这三个阶段都可以成为强烈的声发射源。

声发射产生的机制探析

引发声发射的材料局部变化称为声发射事件,而声发射源,是指声发射事件的物理源点或发生声发射波的机制源。在工程材料中,有许多种损伤与破坏机制可产生声发射源,声发射源类型如图2-1所示。

978-7-111-60740-3-Chapter02-1.jpg

2-1 声发射源类型

可以看出,声发射源涉及的范围非常广泛,这里我们着重讨论三种声发射源。

1.塑性变形

一切固体在受到外力作用时,体积和形状都要发生变化,我们把这两种变化统称为形变。单位长度和单位体积的形变叫应变,而单位面积上所受的力叫应力。对于绝大多数的变形固体,当外力不超过各自的一定范围时,它去除外力后,将完全恢复(或者说几乎完全恢复)原有形状和尺寸,这种性质称为弹性。去除外力后能够消失的变形称为弹性变形。但当外力过大时,在外力去除后,变形只能部分地消失而残留一部分不能消失的变形,材料的这种性质称为塑性。

晶体材料的塑性变形是形成声发射源的—个重要机制之一,当许多金属材料拉伸变形时,可以看到在屈服点附近出现声发射计数率高峰,在进入加硬化阶段,声发射计数率急剧减少。

塑性变形包括位错运动、滑移、孪晶变形。

2.裂纹的形成和扩展

裂纹的形成和扩展也是一种主要的声发射,尤其对无损检测更为重要。裂纹的形成和扩展与材料的塑性变形有关,一旦裂纹形成,材料局部地区的应力集中得到卸载,产生声发射。(www.xing528.com)

材料的断裂过程大体上可分为三个阶段:①裂纹成核;②裂纹扩展;③最终断裂。这三个阶段都可以成为强烈的声发射源。

关于裂纹的形成已经提出过不少模型,如位错塞积理论、位错反应理论和位错销毁理论等,这些模型都得到一部分试验事实的支持。

在微观裂纹扩展成为宏观裂纹之前,需要经过裂纹的慢扩展阶段。理论计算表明,裂纹扩展所需要的能量比裂纹形成需要的能量约大100倍到1000倍。裂纹扩展是间断进行的,大多数金属都具有一定的塑性,裂纹向前扩展一步,将积蓄的能量释放出来,裂纹尖端区域卸载。这样,裂纹扩展产生的声发射很可能比裂纹形成的声发射还大得多。当裂纹扩展到接近临界裂纹长度时,就开始失稳扩展,成为快速断裂。这时产生的声发射强度更大,如断裂韧性试验时,产生人耳可以听得见的声音。

3.纤维增强复合材料的声发射源

高强度、高模量、脆性的增强剂(纤维)均匀地与低强度、低模量、韧性的基体相结合而组成的纤维增强型复合材料,由于它能发挥材料的综合优良性能,凭借其高的强度和比模量及良好的抗疲劳性和成形工艺性在航空航天工业中得了大量应用,并在某些关键部位代替了金属材料。

但是,复合材料通常是以交错叠层的形式构成整体来承受使用载荷的。高的比强度和比模量是用复杂而高价的三维编织技术来达到的,从而构成了复合材料的各向异性

纤维增强复合材料在受力并产生破坏的过程中会出现大量的声发射,其强度和数量都比金属材料的声发射大得多。

纤维增强复合材料的声发射源包括纤维断裂、基材断裂、纤维/基材分离、分层扩展、纤维抽出及界面分离。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈