首页 理论教育 光的散射及其波长改变的研究进展

光的散射及其波长改变的研究进展

时间:2023-07-17 理论教育 版权反馈
【摘要】:偏离原方向的光称为散射光。散射光波长不发生改变的有丁铎尔散射、分子散射;波长发生改变的有拉曼散射、布里渊散射和康普顿散射等。散射光的波长与入射光相同,而其强度与波长λ4成反比的散射,称瑞利散射定律,由瑞利于1871年提出。若入射光为自然光,不同方向散射光的强度正比于1+cos2θ,θ为散射光与入射光间的夹角,称散射角。激光问世以来,关于激光的拉曼散射的研究更得到迅速发展。

光的散射及其波长改变的研究进展

光的散射(scattering of light)是指光通过不均匀介质时一部分光偏离原方向传播的现象。偏离原方向的光称为散射光。散射光波长不发生改变的有丁铎尔散射、分子散射;波长发生改变的有拉曼散射、布里渊散射和康普顿散射等。丁铎尔散射首先由J·丁铎尔研究,是由均匀介质中的悬浮粒子(如空气中的烟雾、尘埃)以及乳浊液、胶体等引起的散射。真溶液不产生丁铎尔散射,化学中常根据有无丁铎尔散射来区别胶体和真溶液。分子散射是由分子热运动所造成的密度涨落引起的散射。波长发生改变的散射与散射物质的微观结构有关。

散射光的波长与入射光相同,而其强度与波长λ4成反比的散射,称瑞利散射定律,由瑞利于1871年提出。此定律成立的条件是散射微粒的线度小于波长。若入射光为自然光,不同方向散射光的强度正比于1+cos2θ,θ为散射光与入射光间的夹角,称散射角。θ=0或π时散射光仍为自然光;θ=π/2时散射光为线偏振光;在其他方向上则为部分偏振光。根据瑞利散射定律可解释天空的蔚蓝色和夕阳的橙红色。

当散射微粒的线度大于波长时,瑞利散射定律不再成立,散射光强度与微粒的大小和形状有复杂的关系。G·米和P·德拜分别于1908年和1909年以球形粒子为模型详细计算3对电磁波的散射。米氏散射理论表明,当球形粒子的半径a<0.3λ/-2π时散射光强遵守瑞利定律,a较大时散射光强与波长的关系不再明显。用白光照射由大颗粒组成的物质时(如天空的云层等),散射光仍为白色。气体液化时,在临界状态附近由密度涨落引起的不均匀区域的线度比波长要大,所产生的强烈散射使原来透明的物质变浑浊,称为临界乳光。(www.xing528.com)

拉曼散射和布里渊散射为研究分子结构或晶体结构提供了重要手段。借助于拉曼散射可快速定出分子振动的固有频率,并可决定分子结构的对称性、分子内部的力等。激光问世以来,关于激光的拉曼散射的研究更得到迅速发展。强激光引起的非线性效应导致了新的拉曼散射现象,如在强激光作用下产生的受激拉曼散射,可获得高强度的多个新波长的相干辐射,用于大气污染的测量(见拉曼光谱学、受激光散射)。

散射与通信技术关系也很密切,如利用对流层电离层以及流星余迹的散射可对上百乃至几百公里距离的定点进行微波或超短波通信,是跨越不能设中转站的地段进行通信的有力措施。此外,微波特别是毫米波穿越雨云和雨幕时,水滴乃至分子的散射与吸收所引起的衰减是不能忽视的。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈