首页 理论教育 线路过电压、过电流的损坏原因分析及防护方法

线路过电压、过电流的损坏原因分析及防护方法

时间:2023-06-24 理论教育 版权反馈
【摘要】:假设雷电从信号线上产生,其分析方法,防护手段同至。环形接地体与设备的电源插座相连或与设备相连,其连线截面积为每平方毫米导线长度最长为10cm。防止直击雷的感应过电压,传统的办法是将各线路进行屏蔽处理或在每一个线路的设备输入、输出端安装各种避雷器。

线路过电压、过电流的损坏原因分析及防护方法

1.雷击避雷针、避雷带、电源线、信号线产生感应过电压(过电流)的现象是经常发生的。

2.图1中的电子设备A和B是两台互相传输数据的设备,假设电源线上传输进来5kA雷电电流波(10/350μS),按图2所示的等效电路,设备是否会被损坏?

图8-1-1 独立接地系统的设备电位差

(1)假设:电源避雷器P性能优良,其响应时间和导通后的残压不会损坏电子设备A,雷电流IP=5kA全部流经避雷器P进入接地点G1入地;

接地电阻R1=1Ω、R2=1Ω、R3=1Ω,且互为独立接地。

雷电流IP流过接地电阻R1时,接地点G1的地电位将抬升为UG1=Ip·R1=5kV。

(2)该电位UG1此时会加到电源的输入端a1,而设备A的接地点G2为零电位,则电源输入端与入地点G2之间的电位差Va1G2=5kV。

电子设备开关电源能耐受的最高电压为800~1500V(10/350μS波),若5kV的电压波加到a1—G2两端,则设备A的电源端将被过电压损坏。

(3)为了避免设备A的电源端免受雷击损坏,应将接地点G1与G2相连接(如图2所示)。

图8-1-2 用避雷器防雷的等电位接地图

(4)从(3)项看,G2电位变为5kV,此时,信号传输线另一端设备B的接地点G3为零电位,而信号接口a2与接地点G2之间的电位差VG2a2变成了5kV,从而使信号接口a2损坏。

(5)要保护信号接口a2,应在信号接口a2和接地点G2之间安装残压小的信号避雷器PA,且接地点必须与G2相连。

(6)由(4)项可以看出,设备信号接口被雷击损坏,该雷电不一定是由信号传输线产生的感应过电压所致。

(7)由(5)项可以发现,虽然设备A的信号接口a2并未损坏,但5kV的电压已加到a2与G3端,那么信号接口b2会损坏吗?理论计算与实验结果表明:a2至b2的信号传输线,如果线径≤1mm,长度大于100m,则线阻加上导线的分布电感所形成的电抗分压,使得加到b2与G3的电压Vb2G3小于100V,但如果传输线小于100m,则有可能使Vb2G3>100V而使设备B受到雷击损坏。

(8)为使设备B得完好保护,应同设备A一样按(3)和(5)项的要求去做。

假设雷电从信号线上产生,其分析方法,防护手段同(1)至(8)。(www.xing528.com)

3.图3是建筑物受直击雷后室内设备受损坏的示意图,图中A、B、C是处在不同楼层的电子设备;SA、SB、SC为各设备之间互相通信的信号线;S是与建筑物外的设备通信信号线;G1、G2、G3为不同楼层建筑物内部钢筋引下线;L、LA、LB、LC为设备供电线路;RS为设备工作接地,RG为建筑物防雷接地,GA、GB、GC为设备工作接地在主杆线上的接地点;PL、PS分别为电源避雷器和信号避雷器。

图8-1-3 建筑物内设备受雷击分析示意图

4.假设雷电直接打在建筑物楼顶避雷带上,入地雷电流I=100kA,RG=1Ω、RS=1Ω。此时,G1、G2、G3所处的各楼层的电位都将抬升100kV,如果GA、GB、GC与防雷地不相连接,就会发生设备工作地线与建筑物楼板到处打火的现象(反击),因为100kV的电位差可击穿的空气距离达300~500mm(由当时的空气绝缘程度而定)。

如果RG与RS相距较远(如20m以上),设备工作接地线与楼板、墙壁绝缘较好,地电位的抬升不足以击穿设备工作地线。但雷击时,工作人员刚好与设备机壳相接触,人身体上的某一部位又与地板或墙壁相接触,雷电将会流过人体进入设备工作接地,人身安全必将受到伤害(作者本人亲眼看到此类事故的发生)。

5.当3项和4项的事故发生后,高电位进入设备击穿设备的电源端或信号端口,雷电从电源线或信号线流出,构成了雷电流回路,使设备受到损坏,造成雷电电流波的低电位引入现象。

(1)为了避免3项和4项事故的发生,RG与RS必须是同一个接地体,即设备工作地和防雷地必须联合接地;联合接地后,人身安全了。

(2)联合接地后,设备就安全了吗?不,雷击时,设备机壳通过工作地线流入接地体,由于地线的分布电感及线电阻产生的线电压降很大(分布电感产生的线电压将在下一节讨论),很难保证设备A与B与C之间的地电位是相等的,当电位差大于100V以上就有可能使SC、SB、SA和S的接口通过信号连接线将雷电流(或过电压)引入而损坏接口;当雷电产生的电位差大于800~1500V,电源输入端口LC、LB、LA也将损坏(不论是否安装避雷器PL、PA,此结果作者曾做过多次试验)。

(3)要解决直击雷造成反击损坏设备的现象,就得尽量减少各点之间的电位差。具体方法是:

各楼层的设备工作地GA、GB、GC应与该楼层的建筑物主钢筋相连(至少两点相连),并在机房内组成环形汇集环,如图4所示。

接在汇集环上的设备1与设备2如果互相连网,在雷击时,因其地电位差极小,从而避免了雷击反击损坏。

(4)禁止在机房内用细小的铜线将设备串联接地,因为导线的分布电感和线阻,将使各接地点之间电位差增大。

(5)如机房内的环形接地体无法与大楼内的主钢筋相连,则用两条铜线同时引下,铜线的截面积为每平方毫米导线最长为0.5m且截面积不宜小于35mm2。环形接地体与设备的电源插座相连或与设备相连,其连线截面积为每平方毫米导线长度最长为10cm。

图8-1-4 机房内的环形接地汇集环图

(6)进入和引出大楼的各种线路均加装避雷器,且应与设备的工作接地相连。

(7)由于直击雷入地的电流强度极大,因此在雷电流入地的过程中,将产生极强的电磁波,该电磁波会近距离感应在大楼内各种设备的线路上,产生感应过电压,从而使设备损坏。

防止直击雷的感应过电压,传统的办法是将各线路进行屏蔽处理或在每一个线路的设备输入、输出端安装各种避雷器。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈