首页 理论教育 按传感器类型和数量分类

按传感器类型和数量分类

时间:2023-06-29 理论教育 版权反馈
【摘要】:(一)传感器类型:CMOS与CCD图2-2-3左图为CCD,右图为CMOSCCD的英文全称是“Charge-coupledDevice”,中文全称是电行耦合元件,通常称为CCD图像传感器。随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。CMOS光电传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。CMOS传感器周围的电子器件,如数字逻辑电路、时钟驱动器以及模/数转换器等,可在同一加工程序中得以集成。

按传感器类型和数量分类

(一)传感器类型:CMOS与CCD(如图2-2-3)

图2-2-3 左图为CCD,右图为CMOS

CCD的英文全称是“Charge-coupledDevice”,中文全称是电行耦合元件,通常称为CCD图像传感器。CCD是一种半导体器件,能够把光学影像转化为数字信号,CCD上植入的微小光敏物质称做像素(Pixel),一块CCD上包含的像素数越多,其提供的画面分辨率也就越高。CCD作用就像胶片一样,但它是把图像像素转换成数字信号,CCD上有许多排列整齐的电容,能感应光线,并将影像转变成数字信号。经由外部电路的控制,每个小电容能将其所带的电行转给它相邻的电容。

CCD图像传感器可直接将光学信号转换为模拟电流信号,电流信号经过放大和模数转换,实现图像的获取、存储、传输、处理和重现,如上图所示,CCD图像传感器具有如下特点:

(1)体积小重量轻;

(2)功耗小,工作电压低;抗冲击与震动,性能稳定,寿命长;

(3)灵敏度高,噪声低,动态范围大;

(4)响应速度快,有自扫描功能,图像畸变小,无残像;

(5)应用超大规模集成电路工艺技术生产,像素集成度高,尺寸精确,商品化生产成本低。

CMOS(Compementary Metal Oxide Semi conductor)指互补金属氧化物半导体,是电压控制的一种放大器件,是组成CMOS数字集成电路的基本单元。在数字影像领域,CMOS作为一种低成本的感光元件技术被发展出来,市面上常见的数码产品,其感光元件主要就是CCD或者CMOS,尤其是低端摄像设备产品,而通常高端摄像设备都是CCD感光元件。

CMOS制造工艺被应用于制作数码影像器材的感光元件,是将纯粹逻辑运算的功能转变成接收外界光线后转化为电能,再通过芯片上的模一数转换器(ADC)将获得的影像讯号转变为数字信号输出。CMOS与CCD主要有以下不同:

(1)成像过程中产生的噪声高;

(2)集成性高;

(3)读出速度快,地址选通开关可随机采样,获得更高的速度;

(4)噪声:由于CMOS图像传感器集成度高,各元件、电路之间距离很近,干扰比较严重,噪声对图像质量影响很大。随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。

从技术角度比较CMOS与CCD的区别有以下几点:

(1)信息读取方式。

CCD电荷耦合器存储的电荷信息,需在同步信号控制下一位一位地实施转移后读取,电荷信息转移和读取输出需要有时钟控制电路和三组不同的电源相配合,整个电路较为复杂。CMOS光电传感器经光电转换后直接产生电流(或电压)信号,信号读取十分简单。

(2)速度。

CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。(www.xing528.com)

(3)电源及耗电量。

CCD电荷耦合器大多需要三组电源供电,耗电量较大;CMOS光电传感器只需使用一个电源,耗电量非常小,仅为CCD电荷耦合器的1/8到1/10,CMOS光电传感器在节能方面具有很大优势。

(4)成像质量。

CCD电荷耦合器制作技术起步早,技术成熟,采用PN结或二氧化硅(SiO2)隔离层隔离噪声,成像质量相对CMOS光电传感器有一定优势。由于CMOS光电传感器集成度高,各光电传感元件、电路之间距离很近,相互之间的光、电、磁干扰较严重,噪声对图像质量影响很大,使CMOS光电传感器很长一段时间无法进入实用。近年,随着CMOS电路消噪技术的不断发展,为生产高密度优质的CMOS图像传感器提供了良好的条件。

从结构区别上分析CMOS与CCD的区别有以下几点:

(1)内部结构(传感器本身的结构)。

CCD的成像点为X-Y纵横矩阵排列,每个成像点由一个光电二极管和其控制的一个邻近电荷存储区组成。光电二极管将光线(光量子)转换为电荷(电子),聚集的电子数量与光线的强度成正比。在读取这些电荷时,各行数据被移动到垂直电荷传输方向的缓存器中。每行的电荷信息被连续读出,再通过电荷/电压转换器和放大器传感。这种构造产生的图像具有低噪音、高性能的特点。但是生产CCD需采用时钟信号、偏压技术,因此整个构造复杂,增大了耗电量,也增加了成本。

CMOS传感器周围的电子器件,如数字逻辑电路、时钟驱动器以及模/数转换器等,可在同一加工程序中得以集成。CMOS传感器的构造如同一个存储器,每个成像点包含一个光电二极管、一个电荷/电压转换单元、一个重新设置和选择晶体管,以及一个放大器,覆盖在整个传感器上的是金属互连器(计时应用和读取信号)以及纵向排列的输出信号互连器,它可以通过简单的X-Y寻址技术读取信号。

(2)外部结构(传感器在产品上的应用结构)。

CCD电荷耦合器需在同步时钟的控制下,以行为单位一位一位地输出信息,速度较慢;而CMOS光电传感器采集光信号的同时就可以取出电信号,还能同时处理各单元的图像信息,速度比CCD电荷耦合器快很多。

CMOS光电传感器的加工采用半导体厂家生产集成电路的流程,可以将数字相机的所有部件集成到一块芯片上,如光敏元件、图像信号放大器、信号读取电路、模数转换器、图像信号处理器及控制器等,都可集成到一块芯片上,还具有附加DRAM的优点。只需要一个芯片就可以实现很多功能,因此采用CMOS芯片的光电图像转换系统的整体成本很低。

CCD和CMOS在制造上的主要区别是CCD是集成在半导体单晶材料上,而CMOS是集成在被称做金属氧化物的半导体材料上,工作原理没有本质的区别。CCD只有少数几个厂商例如索尼、松下等掌握这种技术。而且CCD制造工艺较复杂,采用CCD的摄像设备价格都会相对比较贵。事实上经过技术改造,目前CMOS和CCD的实际效果的差距已经减小了不少。而且CMOS的制造成本和功耗都要比CCD低不少,所以很多摄像设备生产厂商采用的CMOS感光元件。成像方面:在相同像素下CCD的成像通透性、明锐度都很好,色彩还原、曝光可以保证基本准确。而CMOS的产品往往通透性一般,对实物的色彩还原能力偏弱,曝光也都不太好,由于自身物理特性的原因,CMOS的成像质量和CCD还是有一定距离的。但由于低廉的价格以及高度的整合性,因此在摄像设备领域还是得到了广泛的应用。

总而言之,CMOS结构相对简单,与现有的大规模集成电路生产工艺相同,从而生产成本可以降低。从原理上,CMOS的信号是以点为单位的电荷信号,而CCD是以行为单位的电流信号,前者更为敏感,速度也更快,更为省电。现在高级的CMOS并不比一般CCD差,但是CMOS工艺还不是十分成熟,普通的CMOS一般分辨率低而成像较差。

CMOS针对CCD最主要的优势就是非常省电,不像由二极管组成的CCD,CMOS电路几乎没有静态电量消耗,只有在电路接通时才有电量的消耗。这就使得CMOS的耗电量只有普通CCD的1/3左右。CMOS主要问题是在处理快速变化的影像时,由于电流变化过于频繁而过热。暗电流抑制得好就问题不大,如果抑制得不好就十分容易出现杂点。

此外,CMOS与CCD的图像数据扫描方法有很大的差别。例如,如果分辨率为300万像素,那么CCD传感器可连续扫描300万个电荷,扫描的方法非常简单,就好像把水桶从一个人传给另一个人,并且只有在最后一个数据扫描完成之后才能将信号放大。CMOS传感器的每个像素都有一个将电荷转化为电子信号的放大器。因此,CMOS传感器可以在每个像素基础上进行信号放大,采用这种方法可节省任何无效的传输操作,所以只需少量能量消耗就可以进行快速数据扫描,同时噪点也有所降低。

(二)传感器数目:单CCD与3CCD

图像感光器数量即数码摄像机感光器件CCD或CMOS的数量,多数的数码摄像机采用了单个CCD作为其感光器件,而一些中高端的数码摄像机则是用3CCD作为其感光器件(见图2-2-4)。

单CCD是指摄像机里只有一片CCD并用其进行亮度信号以及彩色信号的光电转换。由于一片CCD同时完成亮度信号和色度信号的转换,因此拍摄出来的图像在彩色还原上达不到很高的要求。

图2-2-4 3片CCD摄像机

3CCD顾名思义就是一台摄像机使用了3片CCD。我们知道,光线如果通过一种特殊的棱镜后,会被分为红、绿、蓝三种颜色,而这三种颜色就是我们电视使用的三基色,通过这三基色,就可以产生包括亮度信号在内的所有电视信号。如果分别用一片CCD接受每一种颜色并转换为电信号,然后经过电路处理后产生图像信号,这样,就构成了一个3CCD系统,几乎可以原封不动地显示影像的原色,不会因经过摄像机演绎而出现色彩误差的情况。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈