首页 理论教育 物联网感知层关键技术—智慧监所实务

物联网感知层关键技术—智慧监所实务

时间:2023-08-12 理论教育 版权反馈
【摘要】:通过射频信号自动识别对象并获取相关数据完成信息的自动采集工作,RFID是物联网最关键的一个技术,它为物体贴上电子标签,实现高效灵活的管理。时至今日,RFID技术理论得到了进一步的丰富和发展,人们研发单芯片电子标签、多电子标签识读、无线可读可写、适应高速移动物体的RFID技术不断发展,并且相关产品也走入我们的生活,并开始广泛应用。

物联网感知层关键技术—智慧监所实务

(一)RFID技术

RFID(Radio Frequency Identification),即无线射频识别,俗称电子标签。RFID是一种非接触式的自动识别技术,可识别高速运动物体并可同时识别多个标签,操作快捷方便。通过射频信号自动识别对象并获取相关数据完成信息的自动采集工作,RFID是物联网最关键的一个技术,它为物体贴上电子标签,实现高效灵活的管理。

1.RFID概述

RFID是自动识别技术的一种,通过无线射频方式进行非接触双向数据通信,利用无线射频方式对记录媒体(电子标签或射频卡)进行读写,从而达到识别目标和数据交换的目的,其被认为是21世纪最具发展潜力的信息技术之一。

RFID通过无线电波无接触快速信息交换和存储技术,以及无线通信结合数据访问技术,然后连接数据库系统,加以实现非接触式的双向通信,从而达到识别的目的,用于数据交换,串联起一个极其复杂的系统。在识别系统中,通过电磁波实现电子标签的读写与通信。根据通信距离,可分为近场和远场,为此读/写设备和电子标签之间的数据交换方式也对应地被分为负载调制和反向散射调制。

2.RFID发展历程

1940—1950年:由于雷达技术的发展和进步,从而衍生出了RFID技术。1948年,RFID的理论基础诞生。

1950—1960年:人们开始对RFID技术进行探索,但是并没有脱离实验室研究。

1960—1970年:相关理论不断发展,并且将这一系统在实际中开始运用。

1970—1980年:RFID技术不断更新,产品研究逐步深入,对于RFID的测试开始进一步加速,并且实现了对相关系统的应用。

1980—1990年:RFID技术和相关产品被开发并且应用在市场中,并且出现了多个领域的运用。

1990—2000年:人们开始对RFID的标准化问题给予重视,并且在生活的多个领域可以见到RFID系统的身影。

2000年后:人们普遍认识到标准化问题的重要意义,RFID产品的种类进一步丰富发展,无论是有源、无源,还是半有源电子标签都开始发展起来,相关生产成本进一步下降,应用领域逐渐增加。

时至今日,RFID技术理论得到了进一步的丰富和发展,人们研发单芯片电子标签、多电子标签识读、无线可读可写、适应高速移动物体的RFID技术不断发展,并且相关产品也走入我们的生活,并开始广泛应用。

3.RFID工作原理

RFID技术的基本工作原理并不复杂。标签进入阅读器后,接收阅读器发出的射频信号,凭借感应电流所获得的能量发送出存储在芯片中的产品信息(Passive Tag,无源标签或被动标签),或者由标签主动发送某一频率的信号(Active Tag,有源标签或主动标签),阅读器读取信息并解码后,送至中央信息系统进行有关数据处理

一套完整的RFID系统,是由阅读器、电子标签(也就是所谓的应答器)及应用软件系统三个部分所组成,其工作原理是阅读器(Reader)发射一特定频率的无线电波能量,用以驱动电路将标签内部的数据送出,此时Reader便依序接收解读数据,送给应用程序做相应的处理。

以RFID卡片阅读器及电子标签之间的通讯及能量感应方式来看大致上可以分成:感应耦合及后向散射耦合两种。一般低频的RFID大都采用第一种方式,而较高频大多采用第二种方式。

阅读器根据使用的结构和技术不同可以是读或读/写装置,是RFID系统信息控制和处理中心。阅读器通常由耦合模块、收发模块、控制模块和接口单元组成。阅读器和标签之间一般采用半双工通信方式进行信息交换,同时阅读器通过耦合给无源标签提供能量和时序。在实际应用中,可进一步通过Ethernet或WLAN等实现对物体识别信息的采集、处理及远程传送等管理功能。

4.RFID系统组成部分

完整的RFID系统由阅读器(Reader)、电子标签(Tag)和数据管理系统三部分组成。

(1)阅读器。阅读器是将标签中的信息读出,或将标签所需要存储的信息写入标签的装置。根据使用的结构和技术不同,阅读器可以是读/写装置,是RFID系统信息控制和处理中心。在RFID系统工作时,由阅读器在一个区域内发送射频能量形成电磁场,区域的大小取决于发射功率。在阅读器覆盖区域内的标签被触发,发送存储在其中的数据,或根据阅读器的指令修改存储在其中的数据,并能通过接口与计算机网络进行通信。阅读器的基本构成通常包括:收发天线,频率产生器,锁相环,调制电路,微处理器,存储器,解调电路和外设接口组成。

①收发天线:发送射频信号给标签,并接收标签返回的响应信号及标签信息。

②频率产生器:产生系统的工作频率。

③锁相环:产生所需的载波信号。

④调制电路:把发送至标签的信号加载到载波并由射频电路送出。

⑤微处理器:产生要发送往标签的信号,同时对标签返回的信号进行译码,并把译码所得的数据回传给应用程序,若是加密的系统还需要进行解密操作。

⑥存储器:存储用户程序和数据。

⑦解调电路:解调标签返回的信号,并交给微处理器处理。

⑧外设接口:与计算机进行通信。

(2)电子标签。电子标签由收发天线、AC/DC电路、解调电路、逻辑控制电路、存储器和调制电路组成。

①收发天线:接收来自阅读器的信号,并把所要求的数据送回给阅读器。

②AC/DC电路:利用阅读器发射的电磁场能量,经稳压电路输出为其他电路提供稳定的电源

③解调电路:从接收的信号中去除载波,解调出原信号。

④逻辑控制电路:对来自阅读器的信号进行译码,并依阅读器的要求回发信号。

⑤存储器:作为系统运作及存放识别数据的位置。

⑥调制电路:逻辑控制电路所送出的数据经调制电路后加载到天线送给阅读器。

5.RFID分类

射频识别技术依据其标签的供电方式可分为三类,即无源RFID、有源RFID、半有源RFID

(1)无源RFID。在RFID产品中,无源RFID出现时间最早,最成熟,其应用也最为广泛。在无源RFID中,电子标签通过接收射频识别阅读器传输来的微波信号,以及通过电磁感应线圈获取能量来对自身短暂供电,从而完成此次信息交换。因为省去了供电系统,所以无源RFID产品的体积可以达到厘米量级甚至更小,而且自身结构简单,成本低,故障率低,使用寿命较长。但作为代价,无源RFID的有效识别距离通常较短,一般用于近距离的接触式识别。无源RFID主要工作在低频125 kHz、高频13.56MHz等,其典型应用包括:公交卡、二代身份证、食堂餐卡等。

(2)有源RFID。有源RFID兴起的时间不长,但已在各个领域,尤其是在高速公路电子不停车收费系统中发挥着不可或缺的作用。有源RFID通过外接电源供电,主动向射频识别阅读器发送信号。其体积相对较大。但也因此拥有了较长的传输距离与较高的传输速度。一个典型的有源RFID标签能在百米之外与射频识别阅读器建立联系,读取率可达1 700read/sec。有源RFID主要工作在900MHz、2.45GHz、5.8GHz等高频段,且具有可以同时识别多个标签的功能。有源RFID的远距性、高效性,使得它在一些需要高性能、大范围的射频识别应用场合里必不可少。

(3)半有源RFID。无源RFID自身不供电,但有效识别距离太短。有源RFID识别距离足够长,但需外接电源,体积较大。而半有源RFID就是为这一矛盾而妥协的产物。半有源RFID又叫作低频激活触发技术。在通常情况下,半有源RFID产品处于休眠状态,仅对标签中保持数据的部分进行供电,因此耗电量较小,可维持较长时间。当标签进入射频识别阅读器识别范围后,阅读器先以125 kHz低频信号在小范围内精确激活标签使之进入工作状态,再通过2.4 GHz微波与其进行信息传递。也即是说,先利用低频信号精确定位,再利用高频信号快速传输数据。其通常应用场景为:在一个高频信号所能覆盖的大范围中,在不同位置安置多个低频阅读器用于激活半有源RFID产品。这样既完成了定位,又实现了信息的采集与传递。

6.RFID特点

(1)适用性。RFID技术依靠电磁波,并不需要连接双方的物理接触。这使得它能够无视尘、雾、塑料、纸张、木材以及各种障碍物建立连接,直接完成通信。

(2)高效性。RFID系统读写速度极快,一次典型的RFID传输过程通常不到100ms。高频段的RFID阅读器甚至可以同时识别、读取多个标签的内容,极大地提高了信息传输效率

(3)独一性。每个RFID标签都是独一无二的,通过RFID标签与产品的一一对应关系,可以清楚地跟踪每一件产品的后续流通情况。

(4)简易性。RFID标签结构简单,识别速率高、所需读取设备简单。尤其是随着NFC技术在智能手机上逐渐普及,每个用户的手机都将成为最简单的RFID阅读器。

7.RFID技术的优缺点

(1)优点。射频识别技术能够被广泛应用到多个产业和领域,必然有其“过人之处”。

就其外在表现形式来讲,射频识别技术的载体一般都是要具有防水、防磁、耐高温等特点,保证射频识别技术在应用时具有稳定性。

就其使用来讲,射频识别在实时更新资料、存储信息量、使用寿命、工作效率、安全性等方面都具有优势。射频识别能够在减少人力物力财力的前提下,更便利的更新现有的资料,使工作更加便捷;射频识别技术依据电脑等对信息进行存储,最大可达数兆字节,可存储信息量大,保证工作的顺利进行;射频识别技术的使用寿命长,只要工作人员在使用时注意保护,它就可以进行重复使用;射频识别技术改变了从前对信息处理的不便捷,实现了多目标同时被识别,大大提高了工作效率;而射频识别同时设有密码保护,不易被伪造,安全性较高。

与射频识别技术相类似的技术是传统的条形码技术,传统的条形码技术在更新资料、存储信息量、使用寿命、工作效率、安全性等方面都较射频识别技术差,不能够很好地适应我国当前社会发展的需求,也难以满足产业以及相关领域的需要。

(2)缺点。

①技术成熟度不够。RFID技术出现时间较短,在技术上还不是非常成熟。由于超高频RFID电子标签具有反向反射性特点,使得其在金属、液体等商品中应用比较困难。

②成本高。RFID电子标签相对于普通条码标签价格较高,为普通条码标签的几十倍,如果使用量大的话,就会造成成本太高,在很大程度上降低了市场使用RFID技术的积极性。

③安全性不够强。RFID技术面临的安全性问题主要表现为RFID电子标签信息被非法读取和恶意篡改。

④技术标准不统一。

8.RFID技术的应用领域

(1)物流。物流仓储是RFID最有潜力的应用领域之一,UPS、DHL、Fedex等国际物流巨头都在积极实验RFID技术,以期在将来大规模应用于提升其物流能力。可应用的过程包括:物流过程中的货物追踪、信息自动采集、仓储管理应用、港口应用、邮政包裹、快递等。

(2)交通。RFID技术在出租车管理、公交车枢纽管理、铁路机车识别等方面的应用,已有不少较为成功的案例。

(3)身份识别。RFID技术由于具有快速读取与难伪造性,所以被广泛应用于个人的身份识别证件中。如开展的电子护照项目、我国的第二代身份证、学生证等其他各种电子证件。

(4)防伪。RFID具有很难伪造的特性,但是如何应用于防伪还需要政府和企业的积极推广。RFID技术可应用于贵重物品(烟、酒、药品等)的防伪和票证的防伪等。

(5)资产管理。RFID技术可应用于各类资产的管理,包括贵重物品、数量大相似性高的物品或危险品等。随着标签价格的降低,RFID技术几乎可以管理所有的物品。

(6)食品。可应用于水果蔬菜、生鲜、食品等管理。该领域的应用需要在标签的设计及应用模式上有所创新。

(7)信息统计。射频识别技术的运用,信息统计就变成了一件既简单又快速的工作。由档案信息化管理平台的查询软件传出统计清查信号,阅读器迅速读取馆藏档案的数据信息和相关储位信息,并智能返回所获取的信息和中心信息库内的信息进行校对。如针对无法匹配的档案,由管理者用阅读器展开现场核实,调整系统信息和现场信息,进而完成信息统计工作。

(8)查阅应用。在查询档案信息时,档案管理者借助查询管理平台找出档号,系统按照档号在中心信息库内读取数据资料,核实后,传出档案出库信号,储位管理平台的档案智能识别功能模块会结合档号对应相关储位编号,找出该档案保存的具体部位。管理者传出档案出库信号后,储位点上的指示灯立即亮起。资料出库时,射频识别阅读器将获取的信息反馈至管理平台,管理者再次核实,对出库档案和所查档案核查相同后出库。而且,系统将记录信息出库时间。若反馈档案和查询档案不相符,安全管理平台内的警报模块就会传输异常预警。

(9)安全控制。安全控制系统能实现对档案馆的及时监控和异常报警等功能,以避免档案被毁、失窃等。档案在被借阅归还时,特别是实物档案,常常用作展览、评价检查等,管理者对归还的档案仔细检查,并和档案借出以前的信息核实,能及时发现档案是否受损、缺失等。

9.发展趋势

(1)射频识别标签趋势。随着标准的制定、应用领域的扩大、应用数量的增加、工艺的不断提高、技术的飞速进步(如在图书方面,在封面或版权页上用导电油墨直接印制射频识别天线),其成本会更低;识别距离更远,即使是无源射频识别标签也能达到几十米;体积也将更小。

(2)高频化。超高频射频识别系统与低频系统相比,具有识别距离远、数据交换速度更快、伪造难度更高、对外界的抗干扰能力更强、体积小巧,且随着制造成本的降低和高频技术的进一步完善,超高频系统的应用将会更加广泛。

(3)网络化。部分应用场合需要将不同系统(或多个阅读器)所采集的数据进行统一处理,然后提供给用户使用,如我们使用二代身份证在自动取票机取火车票,这就需要将射频识别系统网络化管理,来实现系统的远程控制与管理。

(4)多能化。随着移动计算技术的不断提高和普及,射频识别阅读器设计与制造的发展趋势将向多功能、多接口、多制式,并向模块化、小型化、便携式、嵌入式方向发展;同时,多阅读器协调与组网技术将成为未来发展方向之一。

(二)条形码

1.条形码概述

条形码(barcode)是将宽度不等的多个黑条和空白(图2-3),按照一定的编码规则排列,用以表达一组信息的图形标识符。常见的条形码是由反射率相差很大的黑条(简称条)和白条(简称空)排成的平行线图案。条形码可以标出物品的生产国、制造厂家、商品名称、生产日期、图书分类号邮件起止地点、类别、日期等许多信息,因而在商品流通、图书管理、邮政管理、银行系统等许多领域都得到广泛的应用。

图2-3 条形码

条形码自动识别系统由条形码标签、条形码生成设备、条形码识读器和计算机组成。

条形码技术(bar code technology,BCT)是在计算机的应用实践中产生和发展起来的一种自动识别技术。它是为实现对信息的自动扫描而设计的,它是实现快速、准确而可靠地采集数据的有效手段。条形码技术的应用解决了数据录入和数据采集的瓶颈问题,为物流管理提供了有利的技术支持。条形码是由一组规则的条空及对应字符组成的符号,用于表示一定的信息。条形码技术的核心内容是通过利用光电扫描设备识读这些条形码符号来实现机器的自动识别,并快速、准确地把数据录入计算机进行数据处理,从而达到自动管理的目的。条形码技术的研究对象主要包括标准符号技术、自动识别技术、编码规则、印刷技术和应用系统设计五个部分。

2.条形码的发展历史

1948年,伯纳德·塞尔沃还是费城煤气科技学院的一名研究生。一次,他无意中听到当地一家连锁超市的总裁恳请院长发明一种可以在收银台处自动记录商品销售的方法。院长认为这是异想天开。但塞尔沃和他的朋友兼研究生同学约瑟夫·伍德兰德决心尝试一番,并且相信这会让他们发大财。

首先,塞尔沃想到可以通过使用紫外线照射使墨绘图形发光的办法来实现。问题是颜料太贵、不稳定且易涂污。接下来,他试着创造一套用来标识的盲点系统。但在将盲点系统标注进货物时困难重重,且经常损害货物。

经过几个月的努力,塞尔沃决定用莫尔斯电码,这是一套由塞缪尔·莫尔斯发明的由点和线组成的符号系统。不久,塞尔沃想到可以将莫尔斯电码中的点线设置成粗细不一的条纹。这个想法后来成了各种条码的最基本构想。

伍德兰德设计可以读取和记录条形码的机器。他想借鉴好莱坞李·德福雷斯特发明的早期用于电影中的声音追踪的系统。德福雷斯在胶片的边缘上画上明暗相间的图案,放映时,放映机射出一条光线,透过这些图案照在一个特制的接收器上,这个接收器可以将光束转化为电流,这种电流可以转换为声音。这是个很不错的想法。但事实证明,这对伍德兰德的实验并不实用。照射的光线太弱,照穿条形码后的光线不能作用于接收器,不能产生跟穿过半透明胶片的光线一样的效果。

1951年,两人决定进行一次条形码阅读器操作实验,地点选在了位于纽约宾汉姆顿的伍德兰德的家里。他们设计了一个桌子大小的机器,用黑布包裹起来阻挡外面的光线进入,在里面装了一个500 W的大灯泡。因为只有光线足够强,才能使从条形码发出的光线被电影声音接收器感知到。但由于500W灯泡产生的热量集中后太热,头两张标有条形码用来识读的纸给烧着了。

经改进,在一个风扇帮助降温的情况下,整个系统终于制造出条形码并可对其进行识读。但这些条形码并不赋有有用信息。

20世纪60年代的两项研发改变了这种状况。首先,激光问世。千分之一瓦的激光束轻而易举地就能产生与伍德兰德500 W巨型灯泡等量的聚集光。其次,计算机科技发展到了一定水平。计算机已经可以十分容易地读取、存取和处理条形码上的信息了。

1972年,超市开始采用统一条形编码。英文词头缩写为UPC,每件商品和每个厂商拥有自己的一个编码。截至1974年,大多数制造商已经在商品上印上了条形码,尽管当时扫描器和识读器还未问世。

塞尔沃和伍德兰德用新开发的激光束设计了扫描器。1974年6月26日,第一个条形码扫描器被安装在俄亥俄州特洛伊的马什超市里。整个扫描系统由4台扫描器组成,4个收银台上各安装一个,然后连接到商店办公室的一台简易计数计算机上。第一件被扫描的商品是10包箭牌的多汁水果味口香糖。这包口香糖今天仍被陈列在史密森学院的美国历史博物馆里。

美国条形码和扫描器首先被用于超市,然后又扩展到批发商和销售商那里。汽车生产商紧随其后,把条形码打在了流水生产线上的一个个汽车零部件上。

今天,扫描器已被用于各种零售商店的收银台上。航空行李托运也在用了条形码追踪行李后,行李丢失率降低了95%。

因为发明了条形码,老布什总统授予了伍德兰德1992年的美国国家科技奖。虽然如此,伍德兰德和塞尔沃仍没能从他们的发明中赚到多少钱,尽管条形码的发明成就了十几亿美元的贸易。单是在超市业这一个行业,因为使用了条形码,每年就能节省1亿多美元。

3.识别原理

条码符号是由反射率不同的条、空按照一定的编码规则组合起来的一种信息符号。由于条码符号中条、空对光线具有不同的反射率,从而使条码扫描器接收到强弱不同的反射光信号,相应地产生电位高低不同的电脉冲。而条码符号中条、空的宽度则决定电位高低不同的电脉冲信号的长短。扫描器接收到的光信号需要经光电转换成电信号并通过放大电路进行放大。由于扫描光点具有一定的尺寸、条码印刷时的边缘模糊性以及一些其他原因,经过电路放大的条码电信号是一种平滑的起伏信号,这种信号被称为模拟电信号。模拟电信号需经整形变成通常的数字信号。根据码制所对应的编码规则,译码器便可将数字信号识读译成数字、字符信息。

条形码扫描器利用光电元件将检测到的光信号转换成电信号,再将电信号通过模拟数字转换器转化为数字信号传输到计算机中处理。

对于一维条形码扫描器,如激光型、影像型扫描器,扫描器都通过从某个角度将光束发射到标签上并接收其反射回来的光线读取条形码信息,因此,在读取条形码信息时,光线要与条形码呈一个倾斜角度,这样,整个光束就会产生漫反射,可以将模拟波形转换成数字波形。如果光线与条形码垂直照射,则会导致一部分模拟波形过高而不能正常地转换成数字波形,从而无法读取信息。

对于二维条形码扫描器,如拍照型扫描器,扫描器的读取采用全向和拍照方式,因此,读取时要求光线与条形码垂直,定位十字和定位框与所扫描条形码吻合。

条形码扫描器一般由光源、光学透镜、扫描模组、模拟数字转换电路,以及塑料或金属外壳等构成。每种条形码扫描器都会对环境光源有一定的要求,如果环境光源超出最大容错要求,条形码扫描器将不能正常读取。条形码印刷在金属、镀银层等表面时,光束会被高亮度的表面反射,若金属反射的光线进入到条形码扫描器的光接收元件,将影响扫描器读取的稳定性,因此,需要对金属表面覆盖或涂抹黑色涂料。

4.码制分类

世界上常用的码制有EAN条形码、UPC条形码、25条形码、交叉25条形码、库德巴条形码、Code 39条形码和Code 128条形码等。

UPC条形码(统一产品代码):只能表示数字,有A、B、C、D、E五个版本,版本A-12位数字,版本E-7位数字,最后一位为校验位,大小是宽1.5in(英寸)(1in≈2.54cm),高1in,而且背景要清晰,主要在美国和加拿大使用,用于工业、医药、仓储等部门。

EAN条形码:是国际通用的符号体系,是一种长度固定、无含意的条形码,所表达的信息全部为数字,主要应用于商品标识。

Code 39条形码和Code 128条形码:为目前国内企业内部的自定义码制,可以根据需要确定条形码的长度和信息,它编码的信息可以是数字,也可以包含字母,主要应用于工业生产线领域、图书管理等,如表示产品序列号、图书、文档编号等。

Code 93码:是一种类似于Code 39码的条形码,它的密度较高,同样适用于工业制造领域。

交叉25条形码(也叫穿插25码):只能表示数字0~9,长度可变,条形码呈连续性,所有条与空都表示代码,第一个数字由条开始,第二个数字由空组成,应用于商品批发、仓库、机场、生产(包装)识别、商业中,条形码的识读率高,可用于固定扫描器的可靠扫描,在所有一维条形码中的密度最高。

库德巴条形码(Codabar):也称“血库用码”,可表示数字0~9,字符$、+、-,还有只能用作起始和终止符的a、b、c、d四个字符,空白区比窄条宽10倍,非连续性条形码,每个字符表示为4条3空,条形码长度可变,没有校验位,主要应用于血站的献血员管理和血库管理,也可作物料管理、图书馆、机场包裹发送中。

PDF417二维条形码(简称417条形码):典型的二维条形码码制,不需要连接一个数据库,本身就可以存储大量数据。417条形码主要应用于医院、驾驶证、物料管理、货物运输;特点是当条形码受到一定破坏时,错误纠正能使条形码正确解码;PDF417条形码是Symbol科技公司于1990年研制的二维条形码产品。它是一个多行、连续性、可变长、包含大量数据的符号标识。每个条形码有3~90行,每一行有一个起始部分、数据部分、终止部分,它的字符集包括所有128个字符,最大数据含量是1 850个字符。

5.条形码的应用

条形码技术已在许多领域中得到了广泛的应用,比较典型的应用有以下五个领域:

(1)零售业。零售业是条形码应用最为成熟的领域。EAN商品条形码为零售业应用条形码进行销售奠定了基础。目前大多数在超市中出售的商品都使用了EAN条形码,在销售时,用扫描器扫描EAN条形码,POS系统从数据库中查找到相应的名称、价格等信息,并对客户所购买的商品进行统计,这大大加快收银的速度和准确性,同时各种销售数据还可作为商场和供需商进货、供货的参考数据。由于销售信息能够及时准确地被统计出来,所以商家在经营过程中可以准确地掌握各种商品的流通信息,可以大大地减少了库存,最大限度地利用资金,从而提高商家的效益和竞争能力。

(2)图书馆。条形码也被广泛用于图书馆中的图书流通环节中,图书和借书证上都贴上了条形码,借书时只要扫描一下借书证上的条形码,再扫一下借出的图书上的条形码,相关的信息就被自动记录人数据库中,而还书时只要一扫图书上的条形码,系统就会根据原先记录的信息进行核对,如足期就将该书还入库中。与传统的方式相比,这大大地提高了工作效率。

(3)仓储管理与物流跟踪。对于大宗物品流动的场合,用传统的手工记录方式记录物品的流动状况,既费时费力,又准确度低,在一些特殊场合,手工记录是不现实的,况且这些手工记录的数据在统计、查询过程中的应用效率也相当低。应用条形码技术,可以实现快速、准确地记录每一件物品,采集到的各种数据可实时地由计算机系统进行处理,使得各种统计数据能够准确、及时地反映物品的状态。

(4)质量跟踪管理。ISO9000质量保证体系强调质量管理的可追溯性,也就是说,对于出现质量问题的产品,应当可以追溯出它的生产时间、操作者等信息。在过去,这些信息很难记录下来,即使有一些工厂(如一些家用电器生产厂)采用加工单的形式进行记录,但随着时间的积累,加工单也越来越多,有的工厂甚至要用几间房子来存放这些单据,从这么多的单据中查找一张单据的难度可想而知!若采用条形码技术,在生产过程的主要环节中,对生产者及产品的数据通过扫描条形码进行记录,并利用计算机系统进行处理和存储,如产品质量出现问题,可利用电脑系统很快地查到该产品生产时的数据,为工厂查找事故原因、改进工作质量提供依据。

(5)数据自动录入(二维条形码)。大量格式化的单据的录入问题是一件很烦琐的事,浪费大量的人力不说,正确率也难以保障。用二维条形码技术,可以把上千个字母或几百个汉字放入名片大小的一个二维条形码中,并可用专用的扫描器在几秒钟内正确地输入这些内容。目前电脑和打印机作为一种必备的办公用品,已相当普及,可以开发一些软件,将格式化报表的内容同时打印在一个二维条形码中。在需要输入这些报表内容的地方扫描二维条形码,报表的内容就自动录入完成了。同时,还可以对数据进行加密,确保报表数据的真实性。

条形码技术在我国的邮电系统、图书情报、生产过程控制、医疗卫生、交通运输等领域都得到较为广泛的应用,特别是商业信息化程度的不断提高,条形码技术也逐步普及,并反过来推动了商业POS系统的发展。

6.发展前景

(1)全球市场发展状况及未来前景。条码技术自诞生以来,凭借着其在信息采集上灵活、高效、可靠、成本低廉的特点,逐渐成为现代社会最常见的信息管理手段之一。而条码识读设备作为信息采集的前端设备,是条码技术应用的前提和基础,并且伴随条码技术的不断发展,目前已成为商品零售、物流仓储、产品溯源、工业制造、医疗健康、电子商务和交通系统等信息化系统建设中必不可少的基础设备。目前,一维码识读设备在全球发达国家和地区已经较为普及。而随着二维码技术的不断发展和应用领域的拓展,影像扫描技术开始逐步实现对激光扫描技术的替代,释放出相应的识读设备市场需求。同时,以亚太地区为代表的新兴市场仍处于快速发展阶段,对条码设备的市场需求与日俱增。该等因素均为市场注入了新的活力,推动了条码识别产业的稳步增长。手持式条码扫描器、固定式POS扫描器和固定式工业类扫描器三类条码识读设备2013年在全球范围内的销售额合计为16.16亿美元,至2018年,全球的条码识读设备的销售总额增长至20亿美元。

(2)我国条码识读设备主要应用领域发展状况。零售、物流、产品溯源、医疗健康、电子商务和工业制造等条码技术下游应用领域的发展和应用层次的深化是驱动条码识别产业发展的重要因素。近年来,在国务院“互联网+”战略下,“020”、物联网等领域得到了极大的发展,进一步推动了条码识别产业的发展。我国条码识读设备主要应用领域的发展情况如下:

①零售、物流、仓储等领域。条码识读设备是零售、物流、仓储市场中的主要信息采集设备,被广泛应用于物资存储、运输、分发、销售、派送等各个环节。近年来,随着我国人均国民收入的提高和网络购物等消费方式的兴起,我国的零售市场及与之相互适应的物流、仓储服务产业得到了极大的发展。2014年,我国社会消费品零售总额为262 394亿元,较2013年增长12.0%,其中网上零售总额达到27 898亿元,同比增长49.7%。2014年,我国物流总额达到213.53万亿,同比增长7.9%。而零售、物流、仓储产业的快速增长离不开先进的信息化管理支持。因此,该等垂直供应链行业的增长将进一步带动包括条码识读设备在内的信息化建设投入。预计未来,我国零售、物流、仓储领域对条码识读设备的需求将继续保持平稳增长。

②产品溯源领域。产品溯源即在产品生产和销售过程中,对每个环节进行记录,并将相应信息汇总后,通过条码等技术在产品上做出相应的质量状态标识,生产管理者或消费者可通过该等标识直接查询产品的生产、流转、存储记录。

③工业制造领域。工业智能生产模式的基础是生产设备的自动化和智能化。而条码识别技术及在其基础之上的机器视觉是现代工业设备实现检测、感知、通信和响应的主要路径之一,自动化生产中的物料调配管理、零件识别及分拣、动态生产控制、产品检测和追踪均需运用到条码识别技术,而机器视觉系统更是减少人为误差、提升生产流水线的柔性和自动化程度重要途径。因此,在工业自动化生产领域,条码识读设备具有巨大的市场潜力。

④医疗健康领域。根据VDC的预测,医疗健康领域将成为未来手持式条码识读设备增长最快的应用领域。就我国而言,主要源于医疗移动信息化解决方案的普及。医疗移动信息化解决方案以数据交互和移动处理为核心,利用条码等自动识别技术,标示和识别包括药品、生化标本、医疗设备、医疗工作人员以及病人身份等在内的信息,通过智能移动终端在核心业务流程进行信息采集,并与医院管理信息化系统(HIS)及临床管理信息化系统(CIS)进行信息交互,搭建移动医疗作业平台。

⑤020运营领域。随着智能手机等移动终端和移动网络的快速普及,消费者的信息获取方式和消费习惯开始出现了较大的变化。在移动互联网时代下,消费者和企业都需要更直接的接入方式,而不再仅仅满足于APP或网页内容,而条码,尤其是二维码凭借其简单可靠、易于传播和信息容量大的优点,逐渐成为O2O运营模式中链接线下、线上的入口。而二维码与020运营模式的交织,将使中国转变为一个多点触控式的销售环境,消费体验更加动态,线下的产品、服务及用户信息能随时随地线上化,并且依托手机支付等途径形成从移动营销、消费者渗透、数据采集、产品服务、支付结算、后续服务为一体的良性商业循环。

7.常用的条形码识读设备

常用的条形码识读设备主要有CCD扫描器、激光扫描器和光笔扫描器三种。

(1)CCD扫描器。CCD扫描器主要采用固定光束(通常是发光二极管的泛光源)照明整个条形码,将条形码符号反射到光敏元件阵列上,经光电转换,辨识出条形码符号。新型的CCD扫描器不仅可以识别一维条形码和行排式二维条形码,还可以识别矩阵式二维条形码。

(2)激光扫描器。激光扫描器是以激光为光源的扫描器。由于扫描光照强,可以远距离扫描且扫描精度较高,被广泛应用。激光扫描器可以分为手持式扫描器和卧式扫描器。

(3)光笔扫描器。光笔是最先出现的一种手持接触式条形码识读器,也是最为经济的一种条形码识读器。使用时,操作者需将光笔接触到条形码表面,当光笔发出的光点从左到右划过条形码时,在“空”的部分光线被反射,“条”的部分光线被吸收。经过光电转换,电信号通过放大、整形后用于译码器。光笔扫描器的优点是成本低、耗电低、耐用,适合数据采集,可读较长的条形码符号;其缺点是光笔对条形码有一定的破坏性。

8.条形码技术的优点

条形码是迄今为止最经济、实用的一种自动识别技术。条形码技术具有以下几个方面的优点:

(1)信息采集速度快。与键盘输入相比,条形码输入的速度是键盘输入的5倍,并且能实现即时数据输入。

(2)可靠性高。键盘输入数据出错率为三百分之一,利用光学字符识别技术出错率为万分之一,而采用条形码技术误码率低于百万分之一。

(3)采集信息量大。利用传统的一维条形码一次可采集几十位字符的信息,二维条形码更可以携带数千个字符的信息,并有一定的自动纠错能力。

(4)灵活、实用。条形码标识既可以作为一种识别手段单独使用,也可以和有关识别设备组成一个系统实现自动化识别,还可以和其他控制设备连接起来实现自动化管理。另外,条形码标签易于制作,对设备和材料没有特殊要求,识别设备操作容易,不需要特殊培训,且设备也相对便宜。

(5)自由度大。识别装置与条形码标签相对位置的自由度要比OCR(光学字符识别)大得多。条形码通常只在一维方向上表达信息,而同一条形码上所表示的信息完全相同并且连续,这样即使标签有部分欠缺,仍可以从正常部分输入正确的信息。

(6)设备简单。条形码符号识别设备的结构简单,操作容易,不需专门训练。

(7)易于制作。可印刷,称为“可印刷的计算机语言”。条形码标签易于制作,对印刷技术设备和材料无特殊要求。

9.条形码的组成

条形码也称条形码符号,是由一组规则排列的条、空及字符组成的平行线条图形,用以表示一定信息的代码。常见的条形码(图2-4)是由反射率相差很大的黑条(简称条)和白条(简称空)组成的。

图2-4 条形码的组成

(1)静区。静区是指条形码左右两端外侧与空的反射率相同的限定区域,是没有任何符号的白色区域,仅用来提示条形码阅读器开始扫描。(www.xing528.com)

(2)起始符。起始符是指条形码符号的第一位字符,标志一个条形码符号的开始,阅读器确认此字符存在后开始处理扫描脉冲。

(3)数据符。数据符是指位于起始符后的字符,用来记录一个条形码的数据值,其结构异于起始符,允许双向扫描。

(4)终止符。终止符是指条形码符号的最后一个字符,标志着一个条形码的结束,阅读器在确认该字符后停止工作。

10.条形码的使用

(1)条形码的使用标准。条形码的使用标准包括两方面的内容:一是条形码码制的选择;二是条形码符号的印刷位置与表示方法。条形码标准的制定一般与某一行业的具体习惯和特点有关。

①码制的选择。条形码码制的选择、条形码符号所代表的数据结构与所能编码的数据类型有关。所选择的条形码的数据类型应包括行业所需的全部数据信息。

②印刷位置。因行业的习惯不同和物品形状的不同,条形码符号的印刷位置也不同。在工业生产领域一般将之印在物品所在面的右下角,在商品流通领域则将之印在物品所在面的左下角。条形码的一般印制位置规定为:首先选择所在物品的正面,其次选择所在物品的背面,再次选择所在物品的侧面。如上述各面均不能使用,采用悬挂标签挂在物品上。凡有提手的物品,印在提手侧面的左下角,不可选择印在有弯曲、隔断、转角的位置上。

③表现方式。条形码符号有三种表现方式:将条形码符号直接印刷在商品的表面或包装容器上;将条形码符号制成标签粘贴或悬挂在商品上;将条形码符号直接印在商品的外包装或运输包装上。

(2)条形码的使用管理。条形码的使用必须遵守一定的管理程序,以确保条形码符合相应的规定。条形码的使用管理一般需要经过以下程序。

①厂商申请厂商代号。采用条形码的厂商,特别是商品生产的厂商,向条形码编码中心及各地分支机构申请厂商代码。

②编码中心核发厂商代号。条形码编码中心对申请者的申请表单及文件进行审核后,发给其登记证书及厂商代号,并附赠印制条形码的相关技术资料。

③设定商品代号。申请厂商可依商品代号设定原则自由设定商品代号,并且通过计算求得校验码,该商品代号和校验码形成商品条形码的编号。

④印制条形码。根据条形码印刷或打印的有关规定,厂商与印刷厂商协商或者自行用打印机将条形码符号印制于包装材料上。

⑤分发基本资料一览表。厂商将含有条形码编号的商品基本资料一览表分发给零售商、批发商等交易环节的参与者。

11.条形码分类

(1)一维条形码。一维条形码可标识物品的生产国、制造厂家、商品名称、生产日期、类别等信息。在商品流通、图书管理、邮政管理、银行系统等许多领域有广泛的应用。目前使用频率最高的几种码制有EAN(European Article Number)码、UPC(Universal Product Code)码、39码、交叉(ITF)25码和EAN128码。UPC条码主要用于北美地区。EAN条码是国际通用符号体系,它是一种定长、无含义的条码,主要用于商品标识。EAN128条码是由国际物品编码协会(EAN International)和美国统一代码委员会(UCC)联合开发、共同采用的一种特定的条码符号。它是一种连续型、非定长、有含义的高密度代码,用以表示生产日期、批号、数量、规格、保质期、收货地等更多的商品信息。另有一些码制主要是适应特殊需要的应用方面,如库德巴码用于血库、图书馆、包裹等的跟踪管理,ITF25码用于包装、运输和国际航空系统为机票进行顺序编号,还有类似39码的93码,它的密度更高些,可代替39码。

(2)二维条形码。一维条形码所携带的信息量有限,如EAN-13码仅能容纳13位阿拉伯数字,更多的信息只能依赖商品数据库的支持,离开了预先建立的数据库,这种条形码就没有意义了,因此,在一定程度上也限制了条形码的应用范围。基于这个原因,在20世纪90年代出现了二维条形码。目前二维条形码主要有PDF417码、Code49码、Code 16K码、Data Matrix码、Maxiocle码等,主要分为堆积或层排式、棋盘或矩阵式两大类。

二维条形码作为一种新的信息存储和传递技术,从诞生之时就受到了国际社会的广泛关注。经过几年的努力,现已应用在国防、公共安全、交通运输、医疗保健、工业、商业、金融、海关及政府管理等多个领域。

二维条形码依靠其庞大的信息携带量,能够把过去使用一维条形码时存储于后台数据库中的信息包含在条形码中,可以直接通过阅读条形码得到相应的信息,并且二维条形码还有错误修正技术及防伪功能,增加了数据的安全性。

二维条形码可把照片、指纹编制于其中,可有效地解决证件的可机读和防伪问题,因此可广泛应用于护照、身份证、行车证、军人证、健康证、保险卡等。

美国亚利桑那州等十多个州的驾驶证、美国军人证、军人医疗证等在几年前就已采用了PDF417技术。将证件上的个人信息及照片编在二维条形码中,不但可以实现身份证的自动识读,而且可以有效防止伪冒证件事件发生。菲律宾、埃及、巴林等许多国家也已在身份证或驾驶证上采用了二维条形码,我国香港特区的护照上也采用了二维条形码技术。另外,在海关报关单、长途货运单、税务报表、保险登记表上也都有使用二维条形码技术来解决数据输入及防止伪造、删改表格的例子。在我国部分地区注册会计师证和汽车销售及售后服务等方面,二维条形码也得到了初步的应用。

二维条形码(2 Dimensional Bar Code)是一种在水平方向和垂直方向均带有信息的条形码。二维条形码除了具有一维条形码的优点外,同时还有储存信息量大、耐损性强、可靠性高,保密、防伪性强等优点。

使用二维条形码能解决的问题:

①可表示包括汉字在内的小型数据文件。

②可在有限的面积上(如电子芯片上)表示大量信息。

③可对“物品”进行精确描述。

④可防止对各种数据、证件、卡片及单证的仿造。

⑤可在远离数据库和不便联网的地方实现数据采集。

二维条形码的使用情景:

①当一维条形码表示的信息量不够用时。

②当数据资料需要跟着产品流通时。

③当文件资料需要保密时。

④当有大量文件要进行传真且需要降低传真费用时。

⑤在没有网络通信的地方。

⑥当数据资料需要重复登录时。

⑦当数据资料需要备份时。

⑧当表单流需要与货物流同步时。

(三)传感器技术

传感器是指能感受规定的被测量,并按照一定的规律转换成可用输出信号的器件或装置。我国国家标准(GB7665-2005)对传感器的定义是:“能感受被测量并按照一定的规律转换成可用输出信号的器件或装置”。

传感器作为信息获取的重要手段,与通信技术和计算机技术共同构成信息技术的三大支柱。

传感器的作用是:利用物理效应、化学效应、生物效应,把被测的物理量、化学量、生物量等转换成符合需要的电量。

1.传感器简介

传感器是能够感受规定的被测量并按一定规律转换成可用输出信号的器件或装置的总称。通常被测量是非电物理量,输出信号一般为电量。当今世界正面临一场新的技术革命,这场革命的主要基础是信息技术,而传感器技术被认为是信息技术三大支柱之一。一些发达国家都把传感器技术列为与通信技术和计算机技术同等位置。随着现代科学发展,传感技术作为一种与现代科学密切相关的新兴学科也得到迅速的发展,并且在工业自动化测量和检测技术、航天技术、军事工程、医疗诊断等学科被越来越广泛地利用,同时对各学科发展还有促进作用。

目前在全世界有6000多家公司生产传感器,品种多达上万种。美国把20世纪80年代看作是传感器时代,日本把传感器列为20世纪80年代到2000年重大科技开发项目。我国把传感器列为“十五”计划重点科技研究发展项目之一。

2.传感器的发展历程

传感技术大体可分3代,第一代是结构型传感器。它利用结构参量变化来感受和转化信号。例如,电阻应变式传感器,它是利用金属材料发生弹性形变时电阻的变化来转化电信号的。

第二代传感器是20世纪70年代开始发展起来的固体传感器。这种传感器由半导体、电介质、磁性材料等固体元件构成,是利用材料某些特性制成的,如利用热电效应、霍尔效应、光敏效应,分别制成热电偶传感器、霍尔传感器、光敏传感器等。

20世纪70年代后期,随着集成技术、分子合成技术、微电子技术及计算机技术的发展,出现集成传感器。集成传感器包括两种类型:传感器本身的集成化和传感器与后续电路的集成化。例如,电荷耦合器件(CCD)、集成温度传感器AD590、集成霍尔传感器UGN3501等。这类传感器主要具有成本低、可靠性高、性能好、接口灵活等特点。集成传感器发展非常迅速,现已占传感器市场的2/3左右,它正向着低价格、多功能和系列化方向发展。

第三代传感器是20世纪80年代刚刚发展起来的智能传感器。所谓智能传感器是指其对外界信息具有一定检测、自诊断、数据处理以及自适应能力,是微型计算机技术与检测技术相结合的产物。20世纪80年代智能化测量主要以微处理器为核心,把传感器信号调节电路、微计算机、存储器及接口集成到一块芯片上,使传感器具有一定的人工智能。20世纪90年代智能化测量技术有了进一步的提高,在传感器一级实现智能化,使其具有自诊断功能、记忆功能、多参量测量功能以及联网通信功能等。

3.应用领域

传感器技术是实现测试与自动控制的重要环节。在测试系统中,被作为一次仪表定位,其主要特征是能准确传递和检测出某一形态的信息,并将其转换成另一形态的信息。

具体地说传感器是指那些对被测对象的某一确定的信息具有感受(或响应)与检出功能,并使之按照一定规律转换成与之对应的可输出信号的元器件或装置。如果没有传感器对被测的原始信息进行准确可靠的捕获和转换,一切准确的测试与控制都将无法实现,即使最现代化的电子计算机,没有准确的信息(或转换可靠的数据),不失真的输入,也将无法充分发挥其应有的作用。

传感器种类及品种繁多,原理也各式各样。其中电阻应变式传感器是被广泛用于电子秤和各种新型机构的测力装置,其精度和范围度是根据需要来选定的,过高的精度要求对某种使用也无太大意义;过宽的范围度也会使测量精度降低,而且会造成成本过高及增加工艺上的困难;因此,应根据测量对象的要求,恰当地选择精度和范围度是至关重要的。但无论何种条件、场合使用的传感器,均要求其性能稳定,数据可靠,经久耐用。为此,在研究高精度传感器的同时,必须重视可靠性和稳定性的研究。包括传感器的研究、设计、试制、生产、检测与应用等诸项内容在内的传感器技术,已逐渐形成了一门相对独立的专门学科。

一般情况下,由于传感器设置的场所并非理想,在温度、湿度、压力等效应的综合影响下,可引起传感器零点漂移和灵敏度的变化,已成为使用中的严重问题。虽然人们在制作传感器过程中,采取了温度补偿及密封防潮的措施,但它与应变片、粘贴胶本身的高性能化、粘贴技术的精确和熟练、弹性体材料的选择及冷、热加工工艺的制定均有密切的关系,哪一方面都不能忽视,都需精心设计和制作。同时,还须注意传感器的安装方法,支撑结构的设置,如何克服横向力等问题。

作为一次仪表的传感器通常由敏感元件与转换元件组成。转换元件通常是精密的电桥。因此,测力秤重用电阻应变式传感器主要由弹性体、应变片、粘贴胶及各种补偿电阻构成。它的稳定性也必然是由这些元件的内、外因的综合作用所决定。

首先是弹性元件。弹性元件一般是由优质合金钢材及有色金属铝、铍青铜等加工成型,影响弹性体稳定性,主要是它经各种处理后的金相组织及残余应力。考虑到应力释放时的相互平衡关系及弹性体结构形式的约束,要想让残余应力释放,就要进行时效处理,这在实际中若采用自然时效法,则释放缓慢、周期长,常常是不可取的,需要人为缩短时间,一般要消除弹性体表面残余应力的方法是:做真空回火处理和疲劳式脉动处理及共振。这样可大幅度地降低残余应力,在短时间内完成通常的长时间的自然时效,使组织性能更为稳定。

其次是应变片和粘接胶。影响应变片稳定性的是箔材本身,制造应变片的电阻合金种类很多,其中以康铜合金使用最广,它有较好的稳定性,高的疲劳寿命及小的电阻温度系数,是理想的丝栅制造材料。此外,制造应变片过程中应消除不良影响而造成的不稳定性。如丝栅与基底胶的粘接强度,应变片与弹性体间的粘贴强度,基底胶内应力的释放等,都是不稳定因素。另外,应变片的粘贴,也是非常关键的要素之一,这一工作的好坏,直接影响胶的粘接质量,乃至测量精度,如果贴片不严格,技术不熟练,即使使用最好的应变片也无济于事。

(1)典型应用一:空调制冷剂液位的精确控制。

用过空调的人肯定都知道满液式冷水机,满液式冷水机组主要由螺杆式制冷压缩机、壳管式冷凝器、满液式蒸发器等组成。对于满液式冷水机组,要实现液体冷媒完全将热传表面润湿同时又不会产生回液,就要对蒸发器内制冷剂液位进行精确控制,对蒸发器液位控制的解决方案大致可以分为两种:间接控制和直接控制。不管是哪种都需要用到传感器。

间接控制是指将除冷媒液位以外的其他系统参数作为调节对象,以间接实现对蒸发器液位的控制。间接控制可以是对蒸发器出口过热度进行控制,即通过温度传感器和控制模块中的控制逻辑,将过热度控制在1.5~2.0℃,从而实现对液位的控制。此外,蒸发器液位也可以通过系统排气、过热度、压缩机油位等反馈参数进行间接控制。

直接控制是直接以蒸发器内制冷剂液位作为被调参数,通过液位传感器采集到的液位信号与给定值进行比较,对目标值进行调节,调节信号输入到节流阀驱动装置,调节目标为节流阀的开度值,从而实现对供液量的精确调节,进而达到精确控制蒸发器内冷媒液位的目的。

随着温度传感器的发展,大多都是采用间接控制的方法进行测量,这样是非常方便的。类似的传感器不仅在空调上有应用,在洗衣机等其他类似家电上也有应用的。

(2)典型应用二:数字医疗中捕捉电压信号。

微型传感器掀开数字药片面纱,“数字药片”就是在高科技盛行的时代下诞生的,这是一种内置可消化微芯片的药物,仅长宽仅1 mm,高也不过0.45mm,体积跟一粒沙子相仿,被植入到正常药片中。其实质是一个微型传感器,由迷你硅片组成,内含极少量镁和铜,当其被吞食的时候,可直接利用人体胃液发电,被服用后会和消化液反应产生轻微电压,将信号传送到皮肤表面。这就需要一个感应装置来捕捉和显示数字药片的信号,这以装置被称为接收片,它通常被贴在服用药片的患者贴近胃部的位置,这个装置接收轻微电压产生的信号并将其转化成为数据,传输到医生手机上,这样医生就知道病人有无按规定服药。而这个小装置不仅可以接收信息,还能够记录病人的心率、温度等——这些信息也能通过手机应用查看。

4.发展趋势与应用前景

对比传感器技术的发展历史与研究现状可以看出,随着科学技术的迅猛发展以及相关条件的日趋成熟,传感器技术逐渐受到了更多人士的高度重视。当今传感器技术的研究与发展,特别是基于光电通信和生物学原理的新型传感器技术的发展,已成为推动国家乃至世界信息化产业进步的重要标志与动力。

由于传感器具有频率响应、阶跃响应等动态特性以及诸如漂移、重复性、精确度、灵敏度、分辨率、线性度等静态特性,所以外界因素的改变与动荡必然会造成传感器自身特性的小稳定,从而给其实际应用造成较大影响。这就要求我们针对传感器的工作原理和结构,在不同场合对传感器规定相应的基本要求,以最大程度优化其性能参数与指标,如高灵敏度、抗干扰的稳定性、线性、容易调节性、高精度、无迟滞性、工作寿命长、可重复性、抗老化、高响应速率、抗环境影响、互换性、低成本、宽测量范围、小尺寸、重量轻和高强度等。

同时,根据对国内外传感器技术的研究现状分析以及对传感器各性能参数的理想化要求,现代传感器技术的发展趋势可以从四个方面分析与概括:一是开发新材料、新工艺和开发新型传感器。二是实现传感器的多功能、高精度、集成化和智能化。三是实现传感技术硬件系统与元器件的微小型化。四是通过传感器与其他学科的交叉整合,实现无线网络化。

(四)无线传感器网络

无线传感器网络(Wireless Sensor Networks,WSN)是一种分布式传感网络,它的末梢是可以感知和检查外部世界的传感器。WSN中的传感器通过无线方式通信,因此网络设置灵活,设备位置可以随时更改,还可以跟互联网进行有线或无线方式的连接,通过无线通信方式形成一个多跳自组织网络。

1.概述

无线传感器网络是一项通过无线通信技术把数以万计的传感器节点以自由式进行组织与结合进而形成的网络形式(图2-5)。构成传感器节点的单元分别为:数据采集单元、数据传输单元、数据处理单元以及能量供应单元。其中数据采集单元通常都是采集监测区域内的信息并加以转换,比如光强度跟大气压力与湿度等;数据传输单元则主要以无线通信和交流信息以及发送接收那些采集进来的数据信息为主;数据处理单元通常处理的是全部节点的路由协议和管理任务以及定位装置等;能量供应单元为缩减传感器节点占据的面积,会选择微型电池的构成形式。

图2-5 WSN结构示意图

无线传感器网络当中的节点分为两种,一个是汇聚节点,一个是传感器节点。汇聚节点主要指的是网关能够在传感器节点当中将错误的报告数据剔除,并与相关的报告相结合将数据加以融合,对发生的事件进行判断。汇聚节点与用户节点连接可借助广域网络或者卫星直接通信,并对收集到的数据进行处理。

传感器网络实现了数据的采集、处理和传输3种功能。它与通信技术和计算机技术共同构成信息技术的三大支柱。无线传感器网络(Wireless Sensor Network,WSN)是由大量的静止或移动的传感器以自组织和多跳的方式构成的无线网络,以协作地感知、采集、处理和传输网络覆盖地理区域内被感知对象的信息,并最终把这些信息发送给网络的所有者。

无线传感器网络所具有的众多类型的传感器,可探测包括地震、电磁、温度、湿度、噪声、光强度、压力、土壤成分、移动物体的大小、速度和方向等周边环境中多种多样的现象。潜在的应用领域可以归纳为:军事、航空、防爆、救灾、环境、医疗、保健、家居、工业、商业等领域。

2.特点

相较于传统式的网络和其他传感器相比,无线传感器网络有以下特点:

(1)组建方式自由。无线网络传感器的组建不受任何外界条件的限制,组建者无论在何时何地,都可以快速地组建起一个功能完善的无线网络传感器网络,组建成功之后的维护管理工作也完全在网络内部进行。

(2)网络拓扑结构的不确定性。从网络层次的方向来看,无线传感器的网络拓扑结构是变化不定的,例如构成网络拓扑结构的传感器节点可以随时增加或者减少,网络拓扑结构图可以随时被分开或者合并。

(3)控制方式不集中。虽然无线传感器网络把基站和传感器的节点集中控制了起来,但是各个传感器节点之间的控制方式还是分散式的,路由和主机的功能由网络的终端实现,各个主机独立运行,互不干涉,因此无线传感器网络的强度很高,很难被破坏。

(4)安全性不高。无线传感器网络采用无线方式传递信息,因此传感器节点在传递信息的过程中很容易被外界入侵,从而导致信息的泄露和无线传感器网络的损坏,大部分无线传感器网络的节点都是暴露在外的,这大大降低了无线传感器网络的安全性。

3.组成结构

无线传感器网络主要由三大部分组成,包括节点、传感网络和用户。其中,节点一般是通过一定方式将节点覆盖在一定的范围,整个范围按照一定要求能够满足监测的范围;传感网络是最主要的部分,它是将所有的节点信息通过固定的渠道进行收集,然后对这些节点信息进行一定的分析计算,将分析后的结果汇总到一个基站,最后通过卫星通信传输到指定的用户端,从而实现无线传感的要求。

4.信息安全

(1)安全需求。由于WSN使用无线通信,其通信链路不像有线网络一样可以做到私密可控。所以在设计传感器网络时,更要充分考虑信息安全问题。手机SIM卡等智能卡,利用公钥基础设施(Public Key Infrastructure,PKI)机制,基本满足了电信等行业对信息安全的需求。同样,亦可使用PKI来满足WSN在信息安全方面的需求。

①数据机密性。数据机密性是重要的网络安全需求,要求所有敏感信息在存储和传输过程中都要保证其机密性,不得向任何非授权用户泄露信息的内容。

②数据完整性。有了机密性保证,攻击者可能无法获取信息的真实内容,但接收者并不能保证其收到的数据是正确的,因为恶意的中间节点可以截获、篡改和干扰信息的传输过程。通过数据完整性鉴别,可以确保数据传输过程中没有任何改变。

③数据新鲜性。数据新鲜性问题是强调每次接收的数据都是发送方最新发送的数据,以此杜绝接收重复的信息。保证数据新鲜性的主要目的是防止重放(Replay)攻击。

④可用性。可用性要求传感器网络能够随时按预先设定的工作方式向系统的合法用户提供信息访问服务,但攻击者可以通过伪造和信号干扰等方式使传感器网络处于部分或全部瘫痪状态,破坏系统的可用性,如拒绝服务(Denial of Service,DoS)攻击。

⑤鲁棒性。无线传感器网络具有很强的动态性和不确定性,包括网络拓扑的变化、节点的消失或加入、面临各种威胁等,因此,无线传感器网络对各种安全攻击应具有较强的适应性,即使某次攻击行为得逞,该性能也能保障其影响最小化。

⑥访问控制。访问控制要求能够对访问无线传感器网络的用户身份进行确认,确保其合法性。

(2)威胁。根据网络层次的不同,可以将无线传感器网络容易受到的威胁分为四类:

①物理层:主要的攻击方法为拥塞攻击和物理破坏。

②链路层:主要的攻击方法为碰撞攻击、耗尽攻击和非公平竞争。

③网络层:主要的攻击方法为丢弃和贪婪破坏、方向误导攻击、黑洞攻击和汇聚节点攻击。

④传输层:主要的攻击方法为泛洪攻击和同步破坏攻击。

(3)关键技术。

①混沌加密技术。密码学属于跨学科的一门科学,其探究的主要是通过一些手段与方式把真正有用的信息给隐藏起来,只有授权方可正确解读信息中的内容,把信息转变为无法读取形式的这项技术即为加密技术。无线传感器当中诸多的混沌加密技术里,最具代表性的一项技术就是对称密钥体制技术,也是一项密码算法,其耗能较低,相对来说计算起来并不是十分烦琐。判断无线传感器网络利用的密码技术是不是最恰当的标准通常有以下几个方面:数据占用的长度跟处理花费的时间、消耗能量的大小、密码算法代码所需的长度等。这当中密码算法包括有高级加密算法跟对称加密算法等等。混沌密码技术整体来说属于较为复杂的一项技术,它遵守了动力学的机制跟混乱与扩散的基本原则。

②密钥管理协议。密钥管理协议是将密钥被生成到利用的所有步骤进行分级授权保护,保证密钥的封闭性同时也能做到灵活的使用。例如密钥的生成、分发授权于金融机构使其能够生成密钥分发给传递中支付方,使其能生成数字签名保证信息不可否认性,而最终的密钥公证则授权与特定机构,以验证信息的真实性。

③数字水印认证技术。数字水印认证技术是通过算法将标识信息嵌入至原始载体中,便于合法使用者进行提取并识别。利用数字水印技术,能够保障认证信息不被篡改,从而提升无线传感器网络的传输可靠性。数字水印技术主要由嵌入器、检测器两部分构成,其与密码学相结合,可以实现对信息的多重安全保护。通常,对于传输信息,利用水印嵌入器来形成水印密钥与原始载体数据的结合,而在使用时根据水印检测器来进行水印解密,输出信息。

④防火墙技术。在具体的应用当中,这项技术具备很强的AAA管理功能,把内部主机IP地址翻译到外网中,使无线传感器网络共享Internet,还可促使外网隐藏到内网结构当中:可支持多种AAA协议对拨入ASA的各式各样远程来访问VPN、登录ASA管理会话中来认证AAA,并予以授权。在无线传感器网络当中,通过防火墙技术,能够确保网络不会遭受到蠕虫、黑客、病毒和坏件等的攻击,而且还含有无客户端模式VPN,保障无线传感器网络客户不用安装VPN客户端就可享用网络服务。在无线传感器网络的组成中,可将无线网络跟核心网络有效隔离开,通过防火墙将一个或者几个无线网络实行分开管理的方式,这样一来即使成功地将无线客户端破解了,也无法攻击有线网络。

5.应用范围

(1)无线传感器在电气自动化中的应用。在我国自动化技术不断发展的进程中,我国电力系统是发展较快的一个领域,电力系统的自动化,有助于减少不必要的能源浪费,减少事故的发生率,以及提高在事故发生时对其进行修理维护的效率。人工电力系统管理工作容错率较低,人们在进行工作的过程中,必须根据电力系统设备的运行情况进行适时调整,在电气自动化的过程中同样需要对电力系统进行实时的监控,根据需求对电压进行调节,电力系统在运行的过程中,由于外界环境比如天气温度等,会时时刻刻发生变化,如果外界条件变化较为剧烈,在电力系统中的各项电力属性同样会发生较大的变化,为了补偿这部分变化,便需要对其进行调节,数据的采集首先是一项重要的内容,需要有一些装置能够对电气系统中的各项电气属性值进行统计,然后进行处理,将数据进行记录传输,根据传输的内容对其进行控制,提高其自动化水平。此外,还需要在电力系统中,在单位路程内设置一些温度和湿度等环境传感设备对电力系统的环境进行监管,以便预计电力系统的变化。在电气自动化中,大多使用无线传感装置,通过无线传感装置能够避免一些线路问题,提高传感装置的高效性。采用无线传感装置,相较于过去的监控管理装置而言具有较多的优点,其中较为明显的优点便是减少了线路的复杂性,在电力系统中,特别是高压输电线,如果线路较为复杂,在进行管理维护的过程中,会增加工作难度,而且具有较高的风险。相较于传统的感应装置,无线传感装置受损的可能性较小,而且传输的数据更加精确,也使其具有更高的价值。

(2)无线传感技术在监测工作中的应用。在使用无线传感技术进行监测的过程中,不同类型的监测工作所用的监测设备也不尽相同。其中在工业生产过程中,较为常用的传感技术是温度传感技术。在使用传感技术对工业生产进行监测的过程中,主要针对锅炉方面进行监测,确保锅炉的安全性。在锅炉中,与锅炉温度息息相关的是锅炉的水冷管,当今常见的水冷管大多都是由钢管组成的,热量在排出的过程中,需要通过钢管排出。但是由于在进行冷却的过程中,随着大量热量的排出,同时会排出一些杂物,比如一些细小的烟尘颗粒等,久而久之水冷壁内部可能会出现一些污垢附着在钢管上,如果污垢堆积过厚,会影响到钢管的散热情况,而水冷壁所能够承受的热量往往有一定的上限,水冷壁上的热量难以及时得到散失,便会在压力过大的情况下进行工作,长时间处于超负荷状态,会对水冷壁的结构造成较为严重的影响,使用一段时间之后,便可能出现较为严重的事故。在当今对锅炉工作进行管理大多采用计算机进行远程操控,这样可以避免高温环境对工作人员造成危害。但是,采用远程操控技术便需要对锅炉进行监控,在高温的环境下,采用有线监控装置,线路会受到高温环境的影响,造成额外的损失,需要投入较多的成本。而采用无线传感技术进行监控,在进行数据的传输过程中,无需其他物品作为媒介,可以直接传输测量数据,这样在进行监控管理的过程中,受损部位的数量会减少,能够有效降低生产成本。而且采用无线传感网络,可以更加全面地对不同部位进行监控,使工作更加全面。

(3)无线传感技术在定位中的应用。无线传感技术在当今的应用,不仅可以有大型组织进行工作和科研进行使用,对于个人来说,由于技术的不断发展,无线传感技术的成本也越来越低,越来越多的人可以将无线传感技术用于个体身上。对于个人来说,无线传感技术的主要使用目的是用来进行定位,定位技术对于传感技术来说是应用较广的方面,在车辆上安装无线传感装置,可以通过无线传感技术,将车辆所在位置信息进行传输,然后再由中转站将信息进行处理发送,这样在接收站能够明确了解汽车所处位置信息。对于汽车进行导航具有重要的意义。此外,还可以对一些随身携带的物品采用无线传感技术,对一些老年人或者儿童进行实时定位,避免一些弱势人员出现意外事故。

(五)EPC

与商务活动中使用的许多编码方案类似,EPC包含用来标识制造厂商的代码以及用来标识产品类型的代码,此外,EPC使用额外的一组数字——序列号来识别单个贸易项目。EPC所标识产品的信息保存在EPC global网络中,而EPC则是获取有关这些信息的一把钥匙。

产品电子代码是下一代产品标识代码,它可以对供应链中的对象(包括物品、货箱、货盘、位置等)进行全球唯一的标识。EPC存储在RFID标签上,这个标签包含一块硅芯片和一根天线。读取EPC标签时,它可以与一些动态数据连接,例如该贸易项目的原产地或生产日期等。这与全球贸易项目代码(GTIN)和车辆鉴定码(VIN)十分相似,EPC就像是一把钥匙,用以解开EPC网络上相关产品信息这把锁。

1.EPC编码结构

(1)标头。指识别EPC的长度、类型、结构、版本号、厂商。

(2)识别代码。指识别公司或企业实体对象分类代码。

(3)类似于库存单位(SKU)序列号。指加标签的对象类的特例。

具体结构如表2-1所示。

表2-1 EPC编码结构

当前,出于成本等因素的考虑,参与EPC测试所使用的编码标准采用的是64位数据结构,未来将采用96位的编码结构。

2.EPC特性

(1)科学性。结构明确,易于使用、维护。

(2)兼容性。EPC编码标准与广泛应用的EAN.UCC编码标准是兼容的,GTIN是EPC编码结构中的重要组成部分,广泛使用的GTIN、SSCC、GLN等都可以顺利转换到EPC中去。

(3)全面性。可在生产、流通、存储、结算、跟踪、召回等供应链的各环节全面应用。

(4)合理性。由EPCglobal、各国EPC管理机构(中国的管理机构称为EPCglobal China)、被标识物品的管理者等进行分段管理、共同维护、统一应用,具有合理性。

(5)国际性。不以具体国家、企业为核心,编码标准全球协商一致,具有国际性。

(6)无歧视性。编码采用全数字形式,不受地方色彩、语言、经济水平、政治观点的限制,是无歧视性的编码。

3.EPC网络

EPC网络是一个能够实现供应链中的商品快速自动识别以及信息共享的框架。EPC网络使供应链中商品信息真实可见,从而使组织机构更加高效地运转。通过采用多种技术手段,EPCglobal网络为在供应链中识读EPC所标识的贸易项目、并且在贸易伙伴之间共享项目信息提供了一种机制。

EPC网络使用射频识别技术(RFID)实现供应链中贸易项信息的真实可见性。它由五个基本要素组成:产品电子代码(EPC)、射频识别系统(EPC标签和识读器)、发现服务(包括ONS)、EPC中间件、EPC信息服务(EPCIS)。

4.EPC工作流程

(1)在由EPC标签、读写器、EPC中间件、Internet、ONS服务器、EPC信息服务(EPC IS)以及众多数据库组成的实物互联网中,读写器读出的EPC只是一个信息参考(指针),由这个信息参考从INTERNET找到IP地址并获取该地址中存放的相关的物品信息,并采用分布式的EPC中间件处理由读写器读取的一连串EPC信息。

(2)由于在标签上只有一个EPC代码,计算机需要知道与该EPC匹配的其他信息,这就需要ONS来提供一种自动化的网络数据库服务,EPC中间件将EPC代码传给ONS,ONS指示EPC中间件到一个保存着产品文件的服务器(EPC IS)查找,该文件可由EPC中间件复制,因而文件中的产品信息就能传到供应链上,如图2-6所示。

图2-6 EPC工作流程图

5.EPC系统构成

EPC系统主要由六个部分组成,如表2-2所示。

(1)EPC编码标准。

(2)EPC标签。

(3)识读器。

(4)神经网络软件(Savant系统)。

(5)对象名称解析服务(Object Naming Service,ONS)。

(6)实体标记语言(Physical Markup Language,PML)。

表2-2 EPC系统构成

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈