首页 理论教育 湿度计法测量土体水势准确度低

湿度计法测量土体水势准确度低

时间:2023-08-20 理论教育 版权反馈
【摘要】:湿度计法在测定高含水率土体的水势时准确度较差,这是由于湿度计本身导电特性所引起的。接下来将分别介绍这3种类型的湿度计。如图1.25所示的Peltier单接点湿度计对很小的温度梯度极为敏感,因此,该湿度计对环境温度要求严格,必须控制在±0.001℃,无法用于现场量测,因为在野外条件下温度波动比较大。

湿度计法测量土体水势准确度低

土中水的自由能(即总吸力)可根据测得的土中水的蒸汽压或土中的相对湿度来确定。可用湿度计(Psychrometer)直接量测土孔隙中的气体或土附近空气的相对湿度,然后通过Kelvin定律把相对湿度换算成总吸力,相对湿度与总吸力的热动力学关系如式(1.1)所示。

湿度计法在测定高含水率土体的水势时准确度较差,这是由于湿度计本身导电特性所引起的。因为湿度计是基于测定相对湿度的变化来确定土体水势的,在含水率高的土体中,相对湿度几乎达到100%,因此湿度计对水分反应的灵敏度降低。

常见的两种湿度计类型,一种是热电偶湿度计(Thermocouple Psychrometer)(Spanner,1951;Richards和Ogata,1958),另一种是热敏电阻器或晶体干湿表(Thermistor或Transistor Psychrometer)(Richards BG,1965)。量测时,将湿度计悬挂在装有土样的封闭装置内,当土、空气、湿度计处于等温状态,湿度计附近的空气湿度达到平衡时,量测相对湿度,计算得到土的总吸力。这两种湿度计的量测范围为100~8000kPa,相对湿度在95%左右。

近年来新推出的冷镜露点湿度计(Chilled Mirror Dew Point Hygrometer)可以将总吸力测试量程提高至几百兆帕,相对湿度可低于95%。接下来将分别介绍这3种类型的湿度计。

1.3.3.1 热电偶湿度计法

热电偶湿度计,也叫温差电偶湿度计。它有两种基本类型,一种是湿环型(Richards和Ogata,1958),另一种是Peltier冷凝湿度计(Peltier Cooled Thermocouple Psychrom-eter)(Spanner,1951),又称spanner湿度计。工作原理都是测出无蒸发面(即干球)和有蒸发面(即湿球)之间的温度差,这两个面的温差与相对湿度直接有关。

湿环型湿度计与Peltier型冷凝湿度计的差别在于为增加蒸发量而加湿蒸发接点的方式不同。在湿环型湿度计中通过向小银环中注入一滴水对蒸发接点加湿;而在Peltier冷凝湿度计中通过Peltier效应电流使蒸发接点温度降低至露点,使得周围微量水气在接点上凝结,从而达到加湿的效果。

Peltier冷凝湿度计常应用于岩土工程中,其主要工作原理是利用Seeback效应和Peltier效应,并通过湿度、温差、电压输出三者之间的关系,由电压输出值反映空气湿度。Seeback效应是在两种不同金属组成的闭合电路中,如果电路两个接点的温度不同,那么电路中会产生电动势。用微电压表量测Seeback电动势,用热电偶量测温度差。电动势与两接点之间的温差呈函数关系。Peltier效应是当电流通过两种不同金属组成的线路时,一个接点变热,而另一个接点变冷。如果电流方向改变,两个接点将出现相反的情况。两者间的温度差也可用热电偶量测。

如图1.25所示是Peltier冷凝热电偶湿度计装置示意图。由0.025mm直径的康铜导线和铬导线焊接在一起组成一个热电偶,焊接点为蒸发或量测接点。热电偶导线通常用罩子保护起来,罩子多为多孔陶瓷罩、不锈钢网等。水蒸气达到平衡所需的时间与保护罩类型有关,陶瓷罩需要较长时间才能达到平衡。

图1.25 Peltier冷凝热电偶湿度计装置示意图

量测前,湿度计与周围大气之间必须达到等温平衡,微电压表读数为零;随后通5mA微电流经过热电偶,由于Peltier效应,焊接量测接点冷却降温,达到与周围大气相应的露点温度,从而使水蒸气在接点上凝结,出现小水珠。15s冷却完成后,Peltier电流停止,凝结水便蒸发到周围大气中去,使接点上的温度进一步下降到露点以下,温度降取决于蒸发率,而蒸发率和周围大气的蒸发压有关。利用Seeback效应量测到周围温度和蒸发引起的温降,该温度降与微电压表记录的电动势呈函数关系。同时,Seeback效应微电动势最大值为周围大气相对湿度的函数,大气越干,输出微电压越大,由此可以计算得到土孔隙中的气体或土附近空气的相对湿度,进而量测土的总吸力。

测量前,应先对湿度计进行率定,确定热电偶的微电压输出与已知总吸力值之间的关系曲线。率定时,准备一封闭装置,装有已知渗透吸力的盐溶液,将湿度计悬挂在盐溶液上方。待湿度计、封闭装置内空气达到等温平衡后,记录微电压表输出的最大值,更换不同浓度盐溶液,重复上述步骤,最终得到电压与吸力的曲线。率定结束后,需彻底清洗湿度计后方可使用该湿度计进行总吸力的量测,但仍然要在封闭装置内进行。待土体、空气和湿度计达到等温平衡后,根据微电压表输出的最大值,对照率定曲线得到土体的总吸力值。

应用Peltier效应电流使接点冷却,所能达到的最大冷却露点温度限值取决于热电偶能够达到的最低露点温度,这就决定了热电偶湿度计能够量测的相对湿度最低值(或土的吸力最高值)。相对湿度越低,与蒸汽压相关联的露点温度也越低。

土中的酸性环境极易腐蚀热电偶(Hamilton等,1981),因此每次率定或使用后,需要按厂家说明书上的要求彻底清洗湿度计。

如图1.25所示的Peltier单接点湿度计对很小的温度梯度极为敏感,因此,该湿度计对环境温度要求严格,必须控制在±0.001℃,无法用于现场量测,因为在野外条件下温度波动比较大。Van Haveren和Brown(1972)提出了具有两个铬-康铜热电偶的双接点Peltier湿度计,又叫温度补偿湿度计,以克服单接点湿度计对温度变化极为敏感的缺点。

竹内真司等(1995)指出在高吸力下干密度对土-水特征曲线的影响较小,所以采用热电偶湿度计法直接对Kunigel V1膨润土及其与砂混合物的粉末进行吸力量测,得到其土-水特征曲线,图1.26中用“○”表示。

图1.26 湿度计法测得的Kunigel V1钠基膨润土的土-水特征曲线(竹内真司等,1995)

1.3.3.2 晶体管湿度计法

Richards BG(1965)研发了热敏电阻/晶体管湿度计(Thermistor/Transistor Psychrometer)。如图1.27所示为晶体管湿度计测总吸力装置示意图,包含隔热密封容器(Thermally Insulated Container)、干湿球湿度计探头(Psychrometer Probes)及数据采集输出部件。

图1.27 晶体管湿度计测总吸力装置示意图

晶体管湿度计是一个电子干湿球温度计(Electronic Wet and Dry Bulb Thermometer),使用两个热敏电阻(Thermistor),一个为干态热敏电阻(Dry Thermistor),一个为湿态热敏电阻(Wet Thermistor)。湿态热敏电阻持有一个标准大小水滴,暴露在土孔隙中的气体或土体周围中的蒸汽空间,当水滴发生蒸发,会引起温度降,温度降与湿度计探头中输出的微电压相关。由电压与总吸力间的率定曲线,如图1.28所示,可推得当密封容器内土体、空气、热敏电阻达到平衡后输出的微电压所对应的土体总吸力。

该装置可量测的总吸力在100~10000kPa,性能也有很大的提升,这归功于微芯片技术(Micro-chip Technology)以及晶体管对微小温度改变的敏感度(Blight,2013)。(www.xing528.com)

像热电偶湿度计一样,晶体管湿度计同样需要用盐溶液进行率定,该率定曲线对温度的波动、磁滞现象及水滴的尺寸都很敏感。

1.3.3.3 冷镜露点湿度计法

近年来,高吸力土体特性研究成为“热点”,湿度计测量法逐渐得到了广泛的应用。前面叙述的两种湿度计的吸力测量范围在10MPa以内,相对湿度高于95%。若相对湿度低于95%,气体环境中水分子数量变得太稀少,无法达到凝结状态。冷镜露点技术的推出,可以大大提高吸力量测的范围,最高可达300MPa。

(1)实验原理。露点温度指空气在水汽含量和气压都不改变的条件下冷却到饱和时的温度。露点温度本是个温度值,但通常还会用来表示空气的相对湿度。这是因为当空气中水汽已达到饱和时,气温与露点温度相同;当水汽未达到饱和时,气温一定高于露点温度,所以露点与气温的差值可以表示空气中的水汽达到饱和的程度。气温降到露点以下是水汽凝结的必要条件。

冷镜露点湿度计采用冷镜露点技术量测等温密闭室内土样与空气水势达到平衡时土样中的总吸力。Regnault(1845)基于热动力学关系提出了使用露点湿度计测总吸力的方法。空气中水以气相的方式存在于土样上方的密闭室里。相对湿度的测量是以平衡状态为基础的,当土样土水势和密闭室内土样上方空气的水势达到平衡时,由测量到的内部蒸汽压和土样温度即可计算出土样的土水势,相应地可得出土样的总吸力。

图1.28 晶体管湿度计的率定曲线

非饱和土的土水势一般包括温度势、压力势、重力势、基质势和溶质势。在等温、等压、等高的情况下,基质势(基质吸力)和溶质势(溶质吸力)构成了非饱和土的土水势,即总吸力。由热力学关系方程(式1.1)可得,土水势与相对湿度RH有关,RH=其中为土样孔隙水的饱和蒸汽压,可通过土样温度来计算;为在同一温度下,纯水平面上方空气的饱和蒸汽压,可以用冷镜露点技术测量。

有学者用压实土样评估了冷镜露点湿度计量测吸力的精度,试验结果表明由冷镜露点湿度计测得的总吸力总是大于用零型轴平移测得的基质吸力与挤液法测得的渗透吸力的和(Blight,2013)。

(2)WP4C露点水势仪。WP4C露点水势仪(以下简称WP4C)是冷镜露点湿度计的代表,可以在5min之内直接测出土样土水势的读数。它的测量范围是0~-300MPa,其中,0~-5MPa范围内的精度是±0.05MPa;-5~-300MPa范围内的精度是±1%(Decagon Devices Inc,2002)。

该装置的照片及构造示意图如图1.29所示。打开WP4C的启动按键,电子显示器主菜单上显示土水势和土样温度,如图1.29中所示的“-181.46MPa,pF6.27,24.9℃”。为提供最精确的测量,WP4C应该在开机后预热15~30min。把土样放在样品杯中,再放入滑动抽屉的圆形凹槽内。将抽屉推入,待电子显示器上显示Ts-Tb<0,将旋钮旋转到“READ”位置,仪器将开始循环测量土样的土水势。

图1.29 WP4C露点水势仪照片及构造示意图

风扇用来使密闭室内的空气流通,加速蒸汽平衡。密闭室内侧固定有一面玻璃镜子,使用Peltier冷却设备使镜子温度降低至露点,使得周围水汽在镜面上凝结成露,之后加热镜子来消除露水。光学传感器(Optical Sensor)向镜面发射一束光,通过分析反射光束探测镜子上的露水是否形成。红外温度计(Infrared Thermometer)测量土样温度Ts和封闭室内空气温度Tb。热电偶(Thermocouple)附在镜子处用来量测镜面平均温度,即露点温度。WP4C仪器配备了光洁度很高的镜面、精度很高的温控系统以及灵敏度很高的露滴(冰晶)光学探测系统。

WP4C露点水势仪是靠平衡土样中的液相水和封闭室内部的气相水并测量封密室内部与露点温度对应的空气饱和蒸汽压。当土样中液相水和封闭室内部空气的气相水达到平衡时,由内部空气的蒸汽压和土样的温度,即可计算得出土样的土水势,即总吸力。量测结束后,电子显示器上将显示土样的土水势和土样温度。

(3)温度对土水势的影响。土样温度Ts和密闭室内空气温度Tb可由红外温度计来量测。露点温度可由附在镜子处的热电偶来量测。WP4C露点水势仪装置可以通过内置热电偶改变镜子和密闭室内温度以控制土样的温度。直到土样与仪器之间的温度差异小于0.1℃,仪器才可测到准确的读数。

对于几乎饱和的土样,只要土样温度稍微高于传感器温度就会有水汽凝结,导致测量误差。WP4C露点水势仪装置中Ts-Tb的功能有助于确保不产生凝结。按主屏幕右侧下方的按键,可以显示出土样温度(Ts)和密闭室空气温度(Tb)之间的差异。如果土样的温度高于密闭室内空气的温度(即Ts-Tb是正值),将会发生凝结,影响测量的精度。此时,如果将旋扭旋至“OPEN/LOAD”,WP4C露点水势仪的红灯会亮,仪器将不会进行测试。此时,应立即把样品拿出来放在冷的表面来降温,盖好盖子防止水分损失,待冷却后,把样品放回并查看温度差异,如果差异达到要求,即Ts-Tb在0~0.5℃即可进行测量。

温度量测的精度对土水势的精确测量非常重要。如果土样量测温度与露点量测温度间差异误差大于1℃,则土水势误差将达到8MPa。为了达到土水势精确量测在±0.05MPa范围内,温度测量就需要精确到0.006℃。当土样量测温度与露点量测温度间差异较大时,要达到0.006℃的精度就会非常困难,应尽量减小两者间的温度差。同时,大的温度差将导致测量时间变长。

WP4C露点水势仪装置的量测结果受环境温度的波动影响较大,对于干燥土样,如果实验室的温度每天波动大于±5℃,土水势读数的变动范围可以达到±0.5MPa。因此,实验室温度需控制为恒温,如20℃±0.5℃。

WP4C露点水势仪的工作环境温度应该在5~43℃。在此温度范围内,WP4C露点水势仪在测量温度相近的样品时既快速又准确。对于温度比密闭室温度相差1℃以上的土样,WP4C露点水势仪将会等到温度差在1℃以内后才开始测量,且土样的温度与密闭室温度越接近,测量周期越短。

(4)仪器校准。WP4C露点水势仪采用冷镜露点技术,由于该技术的特性,需要定期进行校准。采用Decagon公司推荐的重量摩尔浓度为0.5mol/kg的KCl标准液进行校准,该标准液在20℃时对应的水势为-2.19MPa,在25℃时对应的水势为-2.22MPa(Decagon Devices Inc,2002)。仪器出厂时已经进行了校准,得到土样水势与其露点温度线性关系固定标准曲线的斜率,实验室中的校准仅仅是校准零点的漂移

校准时,把整个小瓶KCl溶液全部倒入样品杯并推入密闭室内。观察样品和密闭室空气温度差的变化,待电子显示器上Ts-Tb<0,即样品温度小于密闭室温度时,将旋钮旋转到READ位置进行测量,仪器绿灯亮后显示的读数应该在KCl标准液正确读数±0.05MPa以内,否则需对传感器进行清洁。清洁后再重复上述步骤,并将显示读数值校准为正确值。

(5)样品准备。WP4C露点水势仪附带两种类型样品杯,分别为塑料样品杯和不锈钢样品杯。塑料样品杯适用于绝大多数样品,除了湿度过大的样品。不锈钢样品杯适用于水势大于-1MPa的样品,量测结束后可直接放烘箱烘干土样进行质量含水率分析。量测结束后必须用去离子水彻底洗净样品杯,防止样品之间互相污染以及造成人为的渗透势。校准时用的样品杯与之后测量所使用的样品杯必须是同一类型的。

Yahia-Aissa等(2000)指出土样初始条件的选择对于总吸力的测量没有影响,不管是松粒体还是压实样。将土样放入样品杯,应尽可能覆盖杯的底部。虽说WP4C露点水势仪也可以测量没有完全覆盖底部土样的土水势,但是较大的土样表面积可提高测量的效率。另外,填充土样尽量不要超过半杯,否则有可能会污染传感器,并要确保样品杯的边缘和外表面的清洁。

如短期储存土样(<3h),需盖好样品杯盖子,以防止水分的损失。如果长期储存土样,需用胶纸密封。样品水势低于-300MPa的干燥样品不能通过WP4C露点水势仪精确测量总吸力。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈