首页 理论教育 变形运动的机制及分子基础

变形运动的机制及分子基础

时间:2023-10-20 理论教育 版权反馈
【摘要】:变形运动属于借基底行动的方式。变形运动的速度异常缓慢。因而这些昆虫的振翅动作的起动是受神经支配的,但高频振荡却主要是由振荡器的机械作用来维持的。微丝有两种,粗微丝由肌浆球蛋白构成,细微丝含肌动蛋白等。变形运动的分子机理还不清楚,但一切真核细胞中都发现有肌动蛋白和肌浆球蛋白,说明这一切运动机制可能都有相近的分子基础。

变形运动的机制及分子基础

运动的机制

主要有三种:变形运动、鞭毛和纤毛运动、肌肉运动。前两者主要见于微小生物,后者见于大型动物

一、变形运动

是一种细胞运动,只有单细胞生物能采用这种行动方式,例如,原生动物阿米巴类和粘菌。行动中细胞不断变形,先向前伸出伪足,继而后面的细胞质流入伪足使伪足扩大,逐渐变成生物的主体,继续向前行进时再伸出新的伪足。变形运动属于借基底行动的方式。伪足必须固着于外界物体上才能带动整体前进。变形运动的速度异常缓慢。

二、鞭毛运动和纤毛运动

部分细菌有鞭毛,但与真核生物的不同,较细且短,全靠基部的力量旋转运动。真核生物中,原生动物的鞭毛纲和纤毛纲分别利用鞭毛和纤毛来行动,某些小型扁形动物和软体动物也用纤毛在水底滑行。鞭毛和纤毛的构造基本一致,毛内有11根微管,中心2根,周围包绕着9根。这种“9+2”的格局普遍存在于动物界;绝大多数的动物精子以及脊椎动物的各种纤毛上皮细胞也如此。鞭毛与纤毛的不同只在于它们的运动方式:鞭毛位于动物的头侧,鞭毛各部分顺序摆动形成一个自前而后的波浪,使动物体沿鞭毛长轴方向前进;纤毛动物则体覆大量纤毛,每根纤毛的动作如单臂划水,各纤毛互相配合使水沿体表向后移动,因此动物前进的方向与纤毛呈直角正交。鞭毛和纤毛是特化的行动器官,它可使动物在液体介质中灵活行动,速度较变形运动快得多。(www.xing528.com)

三、肌肉收缩运动

是一切大型生物的主要运动机制。在行动时,身体的某一点(支点)固着于基底(如足固着于地面)或推动周围介质(如鳍或翼推动水或空气),通过肌肉收缩使身体的其他部分(动点)与这个支点间发生相对运动。条形肌肉的两端必须联结在坚实的组织上,这种组织要能承受肌肉的收缩力并将力传给支点和动点。这种组织在高等无脊椎动物是外骨骼,在脊椎动物则为内骨骼。再一种情况是环状肌肉组成的管腔中充满液体,肌肉收缩加力在液体上,通过液体传力。这主要见于没有骨骼的低等无脊椎动物,如蚯蚓躯体的伸缩,海星管足的移动,水母、扇贝和章鱼的后向喷水等都属于这种情况。跳蛛后肢无伸肌,但它的血压却异常的高(400毫米汞柱),高压血液突然涌入后肢内造成快速的伸直运动,可使微小的跳蛛跃出10厘米,其行动的动力间接来自心脏肌肉的收缩。

高等动物行动时,足、鳍、翼都是通过颉颃肌的交替收缩而作屈伸动作。每个单独屈伸动作的动能有一部分转化为肌腱等组织的弹性位能,在下次反向运动时再转回成为动能。昆虫的外骨骼富有弹性,蚊、蝇、蜂的双翅和垂直及水平两组肌肉分别联在外骨骼的不同点上,两者不直接相连。这些肌肉具备一个特点:被牵张时可引起迅速收缩。垂直肌收缩即引起胸部变形,造成双翅上扬和垂直肌本身的张力突然丧失,但胸廓变形却牵张水平肌而引起它的迅速收缩,这个收缩又引起胸廓的反向变形,造成双翅下扇和水平肌本身的张力丧失。这样,外骨骼和肌肉就形成一个振荡器,动能和弹性能交互转化,肌肉提供的能量则用以克服气动阻力维持振荡不致衰减。因此羽翅的频率只决定于振荡器本身,每秒钟百余以至近千下,而肌肉接受的神经冲动频率一秒不过数十。因而这些昆虫的振翅动作的起动是受神经支配的,但高频振荡却主要是由振荡器的机械作用来维持的。

肌肉纤维中含有大量平行排列的蛋白质微丝。微丝有两种,粗微丝由肌浆球蛋白构成,细微丝含肌动蛋白等。粗细微丝交错搭接,当两者交互滑行使肌纤维缩短乃形成肌肉收缩。鞭毛和纤毛内的微管其化学成分与肌肉不同,但有证据说明,它们也是靠微管间滑行来运动。只是因微管长度固定,故管间滑行只能造成一定的侧弯运动,从而造成波浪式运动或划水式运动。变形运动的分子机理还不清楚,但一切真核细胞中都发现有肌动蛋白和肌浆球蛋白,说明这一切运动机制可能都有相近的分子基础。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈