首页 理论教育 多传感器数据融合的方法优化

多传感器数据融合的方法优化

时间:2023-06-28 理论教育 版权反馈
【摘要】:卡尔曼滤波法卡尔曼滤波主要用于融合低层次实时动态的多传感器冗余数据。它使传感器信息依据概率原则进行组合,测量不确定性并用条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。神经网络的这些特性和强大的非线性处理能力,恰好满足了多传感器数据融合技术处理的要求。

多传感器数据融合的方法优化

利用多个传感器所获取的关于对象和环境全面完整的信息,主要体现在融合算法上。因此,多传感器系统的核心问题是选择合适的融合算法。对于多传感器系统来说,信息具有多样性和复杂性,因此,对信息融合方法的基本要求是具有健壮性并行处理能力。此外,还要考虑方法的运算速度和精度、与前续预处理系统和后续信息识别系统的接口性能、与不同技术和方法的协调能力、对信息样本的要求等。一般情况下,信息融合方法是基于非线性的数学方法,具有容错性、自适应性、联想记忆和并行处理能力。

多传感器数据融合在不少应用领域根据各自的具体应用背景,已经提出了许多成熟并且有效的融合方法。多传感器数据融合的常用方法基本上可概括为随机和人工智能两大类,随机类方法有加权平均法、卡尔曼滤波法、多贝叶斯估计法、Dempster-Shafer(D-S)证据推理、产生式规则等;而人工智能类则有模糊逻辑理论、神经网络、粗集理论、专家系统等。可以预见,神经网络和人工智能等新概念、新技术在多传感器数据融合中将起到越来越重要的作用。

1)随机类方法

(1)加权平均法

信号级融合方法中最简单、最直观的方法是加权平均法,该方法将一组传感器提供的冗余信息进行加权平均,结果作为融合值,该方法是一种直接对数据源进行操作的方法。在每一个数的权重相同的情况下,加权平均值就等于算术平均值;在权重不同时,表示各个传感器对最后评估的贡献或者影响力就不一样。

(2)卡尔曼滤波

卡尔曼滤波主要用于融合低层次实时动态的多传感器冗余数据。该方法用测量模型的统计特性递推,决定统计意义下的最优融合和数据估计。如果系统具有线性动力学模型,且系统与传感器的误差符合高斯白噪声模型,则卡尔曼滤波将为融合数据提供唯一统计意义下的最优估计。卡尔曼滤波的递推特性使系统处理时不需要大量的数据存储和计算。但是,采用单一的卡尔曼滤波器对多传感器组合系统进行数据统计时,存在一些潜在的问题,例如:在组合信息大量冗余的情况下,计算量将以滤波器维数的三次方剧增,实时性不能满足;同时,传感器子系统的增加使故障随之增加,在某一系统出现故障而没有及时被检测出时,故障会污染整个系统,使可靠性降低。

(3)多贝叶斯估计法

贝叶斯估计为数据融合提供了一种手段,是融合静环境中多传感器高层信息的常用方法。它使传感器信息依据概率原则进行组合,测量不确定性并用条件概率表示,当传感器组的观测坐标一致时,可以直接对传感器的数据进行融合,但大多数情况下,传感器测量数据要以间接方式采用贝叶斯估计进行数据融合。

多贝叶斯估计将每一个传感器作为一个贝叶斯估计,将各个单独物体的关联概率分布合成一个联合的后验的概率分布函数,通过使用联合分布函数的似然函数为最小,提供多传感器信息的最终融合值,融合信息与环境的一个先验模型提供整个环境的一个特征描述。

(4)D-S证据推理方法

D-S证据推理是贝叶斯推理的扩充,其三个基本要点是:基本概率赋值函数、信任函数和似然函数。D-S方法的推理结构是自上而下的,分为3级:第1级为目标合成,其作用是把来自独立传感器的观测结果合成为一个总的输出结果(ID);第2级为推断,其作用是获得传感器的观测结果并进行推断,将传感器观测结果扩展成目标报告,这种推理的基础是一定的传感器报告以某种可信度在逻辑上会产生可信的某些目标报告;第3级为更新,各种传感器一般都存在随机误差,所以,在时间上充分独立地来自同一传感器的一组连续报告比任何单一报告可靠。因此,在推理和多传感器合成之前,要先组合(更新)传感器的观测数据。(www.xing528.com)

(5)产生式规则

产生式规则采用符号表示目标特征和相应传感器信息之间的联系,与每一个规则相联系的置信因子表示它的不确定性程度。当在同一个逻辑推理过程中,两个或多个规则形成一个联合规则时,可以产生融合。应用产生式规则进行融合的主要问题是每个规则的置信因子的定义与系统中其他规则的置信因子相关,如果系统中引入新的传感器,需要加入相应的附加规则。

2)人工智能类方法

(1)模糊逻辑推理

模糊逻辑是多值逻辑,通过指定一个0到1之间的实数表示真实度,相当于隐含算子的前提,允许将多个传感器信息融合过程中的不确定性直接表示在推理过程中。如果采用某种系统化的方法对融合过程中的不确定性进行推理建模,则可以产生一致性模糊推理。与概率统计方法相比,逻辑推理存在许多优点,它在一定程度上克服了概率论所面临的问题,对信息的表示和处理更加接近人类的思维方式,一般比较适合于在高层次上的决策应用。

模糊集合理论对于数据融合的实际价值在于它外延到模糊逻辑,模糊逻辑是一种多值逻辑,隶属度可视为一个数据真值的不精确表示。在多传感器信息融合过程中,存在的不确定性可以直接用模糊逻辑表示,然后,再使用多值逻辑推理,根据模糊集合理论的各种演算对各种命题进行合并,进而实现数据融合。

(2)人工神经网络

神经网络具有很强的容错性以及自学习自组织及自适应能力,能够模拟复杂的非线性映射。神经网络的这些特性和强大的非线性处理能力,恰好满足了多传感器数据融合技术处理的要求。在多传感器系统中,各信息源所提供的环境信息都具有一定程度的不确定性,对这些不确定信息的融合过程实际上是一个不确定性推理过程。神经网络根据当前系统所接受的样本相似性确定分类标准,这种确定方法主要表现在网络的权值分布上,同时,可以采用经标定的学习算法来获取知识,得到不确定性推理机制。利用神经网络的信号处理能力和自动推理功能,即实现了多传感器数据融合。

(3)专家系统方法

专家系统是一种在相关领域中具有专家水平的智能程序系统,它能运用领域专家多年积累的经验与专门知识,模拟人类专家的思维过程,求解需要专家才能解决的困难问题。一般说来,该类系统的优点是具有专家水平的专门知识,能进行有效的推理,具有获取知识的能力,具有灵活性、透明性、交互性和适用性。专家系统发展的趋势是分布协同式专家系统,但需要处理好专家之间的任务分配和交互作用问题。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈