首页 理论教育 BIM数据集成,住宅产业化优势

BIM数据集成,住宅产业化优势

时间:2023-09-27 理论教育 版权反馈
【摘要】:另外,在产业化住宅建造过程中也有对BIM技术的实际需求,如住宅设计过程中的空间优化,减少错漏碰缺、深化设计需求、施工过程的优化和仿真、项目建设中的成本控制等。总之,BIM技术非常适合在住宅产业化中推广应用,而且相对投入的成本较低,应用产出的效能较高,通过BIM技术可以大大提高产业化住宅建设过程整体的管理水平。③构件检测自动化,利用BIM模型中的尺寸数据并结合预制构件的自动化生产线,实现预制构件成品检测的自动化。

BIM数据集成,住宅产业化优势

BIM源自建筑全生命周期管理理念,从某种意义上说发源自制造业(制造业很早就有了产品全生命周期管理理论PDM)。我们看到,目前很多建筑业的BIM软件最早都来源于机械航空造船等制造业的PDM软件。对于制造业的PDM,其管理的最基本单位是单个“零件”,传统的采用现浇方式的建筑,其“零件”的概念不是很明晰,而预制装配式建筑主要由预制的“柱、梁、板、楼梯、阳台”等构件组成,实质上这样的建筑物是被“零件化”了,所以产业化的住宅是最接近制造业生产方式的一种建筑产品,也非常适用于采用类似制造业的方法进行管理,所以BIM在住宅产业化中的应用有天然的优势。

工业化的住宅具有房型简单、模块化等特点,采用BIM技术可比较容易地实现模块化设计和构件的零件库,这使得BIM建模工作的难度降低。产业化的住宅生产方式也要求实现全产业链的、全生命周期的管理,而这种生产和管理方式又与BIM技术所擅长的全生命周期管理理念不谋而合。另外,在产业化住宅建造过程中也有对BIM技术的实际需求,如住宅设计过程中的空间优化,减少错漏碰缺、深化设计需求、施工过程的优化和仿真、项目建设中的成本控制等。总之,BIM技术非常适合在住宅产业化中推广应用,而且相对投入的成本较低,应用产出的效能较高,通过BIM技术可以大大提高产业化住宅建设过程整体的管理水平。

在设计阶段,可以利用BIM进行建筑设计结构设计以及设备设计,同时利用BIM模型可以进行建筑物的性能分析,如:日照性能分析,采光性能分析,能耗性能分析,结构性能分析等。深化设计阶段是产业化住宅生产中非常重要的环节,由于预制件是在工厂生产然后运输到现场进行安装,预制件设计和生产的精确度就决定了现场安装的准确度,所以要进行预制构件设计的“深化”工作,其目的是为了保证每个构件到现场都能准确的安装,不发生错漏碰缺。但是,一栋普通预制装配式建筑(Prefabricated Concrete,PC)的预制构件往往有数千个,要保证每个预制构件到现场拼装不发生问题,靠人工进行校对和筛查显然是不可能的,但BIM可以很好地担负这个责任。利用BIM模型,可以把可能发生在现场的冲突与碰撞在BIM模型中进行事先消除,深化设计人员再用BIM软件对建筑模型进行碰撞检测,这种检测不仅可以发现构件之间是否存在干涉和碰撞,还可以检测构件的预埋钢筋之间是否冲突和碰撞,根据碰撞检测的结果,可以调整和修改构件的设计并完成深化设计图纸。(www.xing528.com)

除了在设计、深化设计阶段应用BIM技术手段解决传统的二维设计不擅长解决或者不能解决的问题以外,将BIM应用于工程建设管理也是BIM应用的重点,通过构建基于BIM的多方参与的工程建设管理集成平台,使参与项目的不同组织(如业主、设计、制造、施工等)能够同时加入到工程项目管理中来,通过BIM进行信息的沟通;相信在不久的将来,利用BIM进行项目管理将开创工程项目管理革新的新纪元。

上海城建集团在某PC住宅项目中就利用BIM技术完成了PC深化设计、生产和建造环节的建设工作。由于PC住宅采用工业化的方式进行生产,所以整个生产过程充分利用BIM模型进行数字化和自动化的制造,主要有:①模具设计自动化,BIM模型可以提供预制构件模具设计所需要的三维几何数据以及相关辅助数据,可实现模具设计的自动化,如果结合预制构件的自动化生产线,还能实现拼模的自动化。②钢筋加工自动化,利用BIM模型中的钢筋数据模型输出钢筋加工数控机床的控制数据,实现钢筋的自动裁剪和弯折加工,并利用软件实现钢筋用料的最优化。③构件检测自动化,利用BIM模型中的尺寸数据并结合预制构件的自动化生产线,实现预制构件成品检测的自动化。④施工现场自动定位放样,基于BIM模型的空间信息以及全自动全站仪等设备,实现基于BIM模型数据的施工现场自动定位放样。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈