首页 理论教育 大气污染元素As和Pb的来源及解析

大气污染元素As和Pb的来源及解析

时间:2023-09-24 理论教育 版权反馈
【摘要】:污染元素As和Pb在泰山春季PM 2.5中的富集系数为1 541和679,而夏季为1 470和1 969。As和Pb在春季与地壳元素Al和Fe相关度很高,Pb与Al和Fe的相关系数分别为0.701和0.873,As与Al和Fe的相关系数分别为0.837和0.778,而Pb和As的相关系数高达0.949。As和Pb与矿物元素皆有很高的相关性,说明在春季泰山顶部气溶胶以及As和Pb这2种污染元素,皆与西北部沙尘的长途传输有关。

大气污染元素As和Pb的来源及解析

污染元素As和Pb在泰山春季PM 2.5中的富集系数(EF)为1 541和679,而夏季为1 470和1 969。As和Pb的EF随季节变化而不同,Pb是夏季高、春季低,As是春季高、夏季低。As和Pb在春季与地壳元素Al和Fe相关度很高,Pb与Al和Fe的相关系数分别为0.701和0.873,As与Al和Fe的相关系数分别为0.837和0.778,而Pb和As的相关系数高达0.949。As和Pb与矿物元素皆有很高的相关性,说明在春季泰山顶部气溶胶以及As和Pb这2种污染元素,皆与西北部沙尘的长途传输有关。来自西北部沙尘源的扬尘,在传输过程中与富含As和Pb的人为排放污染物混合,气溶胶的长途传输可以携带石化燃烧排放的污染,扩散到全国各地。在夏季Pb与Al和Fe的相关系数都呈负相关(-0.184和-0.194),说明夏季Pb的局地排放占绝对优势;As与Al和Fe仍有一定的正相关(0.469和0.456),而Pb与As的相关系数也降低到0.494,说明泰山夏季气溶胶中的Pb和As主要源于局地或区域的排放。Pb和As与Cr、Cu及Zn在夏季都有较高的相关性,表明在夏季Pb和As来自局地人为排放的贡献。

表27-11 泰山顶部春季和夏季大气气溶胶中各有关组分间的相关系数

综上所述,以泰山为代表的中国中东部气溶胶,显示明显的季节变化,春季以粗颗粒为主,而夏季以细颗粒物污染占主导地位。污染气溶胶的来源包括中国西北部沙尘的长途传输、区域人为排放以及泰山特殊环境的二次气溶胶污染。生物质燃烧是泰山颗粒物污染的重要来源,春季贡献7.56%,而夏季上升到36.71%,某些天甚至达到81.58%。泰山顶部高浓度的O3和过氧化物浓度,加上其特殊的气候特点,使SO 2和NO x更易于转化为SO2-4和NO-3,导致该区域严重的二次污染。

参考文献

[1] Tegen I,Lacis A A,Fung I.The influence of climate forcing of mineral aerosols from disturbed soils.Nature,1996,380(4):419-422.

[2] Arimoto R.Eolian dust and climate:Relationship to sources,tropospheric chemistry,transport and deposition.Earth Sci Rev,2001,54:29-42.

[3] Rastogi N,Sarin M M.Long-term characterization of ionic species in aerosols from urban and high altitude sites in western India:Role of mineral dust and anthropogenic sources.Atmos Environ,2005,39:5541-5554.

[4] Rastogi N,Sarin M M.Chemistry of aerosols over a semiarid region:Evidence for acid neutralization by mineral dust.J Geophys Res Lett,2006,33:L23815.doi:10.1029/2006GL027708.

[5] Kaufman Y J,Tanre D,Boucher O.A satellite view of aerosols in the climate system.Nature,2002,419:215-223.

[6] Chan Y C,Simpson R W,Mctainsh G H,et al.Source apportionment of visibility degradation problems in Brisbane(Australia)using the multiple linear regression technique.Atmos Environ,1999,33:3237-3250.

[7] Dockery D W,Pope A C,Xu X,et al.An association between air pollution and mortality in six US cities.New Engl J Med,1993,329(24):1753-1759.

[8] Wang Y,Wai K,Gao J,et al.The impacts of anthropogenic emissions on the precipitation chemistry at an elevated site in north-eastern China.Atmos Environ,2008,42:2959-2970.

[9] Gao J,Wang T,Ding A,et al.Observational study of ozone and carbon monoxide at the summit of Mount Tai(1534 ma.s.l.)in central-eastern China,Atmos Environ,2005,39(20):4779-4791.

[10] Wang T,Cheung A,Vincent T F,et al.Ozone and related gaseous pollutants in the boundary layer of eastern China:Overview of the recent measurements at a rural site.Geophys Res Lett,2001,28(12):2373-2376.

[11] Suthawaree J,Kato S,Okuzawa K,et al.Measurements of volatile organic compounds in the middle of Central East China during Mount Tai Experiment 2006(MTX2006):Observation of regional background and impact of biomass burning.Atmos Chem Phys,2010,10:1269-1285,doi:10.5194/acp-10-1269-2010.

[12] Ren Y,Ding A,Wang T,et al.Measurement of gas-phase total peroxides at the summit of Mount Tai in China,Atmos Environ,2009,43:1702-1711.

[13] Novelli P C,Masarie K A,Tans P P,et al.Recent changes in atmospheric carbon monoxide.Science,1994,263:1587-1590.

[14] Novelli P C,Masarie K A,Lang P M.Distributions and recent changes of carbon monoxide in the lower troposphere.J Geophys Res,1998,103(D51):19015-19033.

[15] Guo J,Kenneth A R,Zhuang G.A mechanism for the increase of pollution elements in dust storms in Beijing.Atmos Environ,2004,38:855-862.

[16] Dentener F J,Carmichael G R,Zhang Y.Role of mineral aerosol as a reactive surface in the global troposphere.J Geophys Res Atmos,1996,101(D17):22869-22889.

[17] Sun Y,Zhuang G,Wang Y,et al.The air-borne particulate pollution in Beijing-concentration,composition,distribution and sources.Atmos Environ,2004,38:5991-6004.

[18] Liu C L,Zhang J,Liu S M.Physical and chemical characters of materials from several mineral aerosol sources in China.Environ Sci,2002,23:28-32.

[19] Arimoto R,Duce R A,Savoie D L.Relationships among aerosol constituents from Asia and the North Pacific during PEM-West.J Geophys Res Atmos,1996,101(D1):2011-2023.

[20] Zhang X Y,Arimoto R,An Z S.Dust emission from Chinese desert sources linked to variations in atmospheric circulation.J Geophys Res-Atmos,1997,102(D23):28041-28047.

[21] Sun Y,Zhuang G,Huang K,et al.Asian dust over northern China and its impact on the downstream aerosol chemistry in 2004.J Geophys Res,2010,115:D00K09.doi:10.1029/2009JD012757.

[22] Wang Y,Zhuang G,Sun Y,et al.The variation of characteristics and formation mechanisms of aerosols in dust,haze,and clear days in Beijing.Atmos Environ,2006a,40:6579-6591.

[23] Wang Y,Zhuang G,Zhang X,et al.The ion chemistry,seasonal cycle,and sources of PM 2.5 and TSP aerosol in Shanghai.Atmos Environ,2006b,40:2935-2952.

[24] Tsai Y I,Cheng M T.Visibility and aerosol chemical compositions near the coastal area in central Taiwan.Sci Total Environ,1999,231:37-51.

[25] Novakov T,Penner J E.Large condensation of organic aerosols to cloud-condensation nuclei concentration.Nature,1993,365:823-826.

[26] Matsumoto K,Tanaka H,Nagao I,et al.Contribution of particulate sulfate and organic carbon to cloud condensation nuclei in the marine atmosphere.Geophys Res Lett,1997,24:655-658.(www.xing528.com)

[27] Facchini M C S,Decesari M,Mircea S,et al.Surface tension of atmospheric wet aerosol and cloud/fog droplets in relation to their organic carbon content and chemical composition.Atmos Environ,2000,34:4853-4857.

[28] Wang Y,Zhuang G,Sun Y,et al.Water-soluble part of the aerosol in the dust storm season—Evidence of the mixing between mineral and pollution aerosols.Atmos Environ,2005,39:7020-7029.

[29] 王艳,葛福玲,刘晓环,等.泰山降水的离子组成特征分析.中国环境科学,2006,26(4):422-426.

[30] Streets D G,Yarber K F,Woo J H,et al.Biomass burning in Asia:Annual and seasonal estimates and atmospheric emissions.Global Biogeochem Cy,2003,17(4):1099.doi:10.1029/2003GB002040.

[31] 曹国良,张小曳,王丹,等.秸秆露天焚烧排放的TSP等污染物清单.农业环境科学学报,2005,2,25(4):389-393.

[32] 祝斌,朱先磊,等.农作物秸秆燃烧PM 2.5排放因子的研究.环境科学研究,2005,18(2):29-33.

[33] Andreae M O.Soot carbon and excess fine potassium:Long-range transport of combustionderived aerosols.Science,1983,220:1148-1151.

[34] Wedepohl K H.The compositions of the continental crust.Geochim Cosmochim Acta,1995,59:1217-1232.

[35] Virkkula A,TeiniläK,Hillamo R,et al.Chemical composition of boundary layer aerosol over the Atlantic Ocean and at an Antarctic site.Atmos Chem Phys,2006,6:3407-3421.doi:10.5194/acp-6-3407-2006.

[36] Li X,Wang S,Duan L,et al.Particulate and trace gas emissions from open burning of wheat straw and corn stover in China.Environ Sci Technol,2007,41(17):6052-6058.

[37] Cao G,Zhang X,Gong S,et al.Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning.Environ Sci,2008a,20:50-55.

[38] Yaacov M,Judith G.Heterogeneous reactions of minerals with sulfur and nitrogen oxides.J Aerosol Sci,1989,20(3):303-311.

[39] Underwood G M,Li P,Al-Abadleh H,et al.A Knudsen cell study of the heterogeneous reactivity of nitric acid on oxide and mineral dust particles.J Phys Chem A,2001,105(27):6609-6620.

[40] Song C H,Carmichael G R.A three-dimensional modeling investigation of the evolution processes of dust and sea-salt particles in East Asia.J Geophys Res-Atmos,2001,106(D16):18131-18154.

[41] Pierson W R,Brachaczek W W,Mckee D E.Sulfate emissions from catalyst equipped automobiles on the highway.J Air Pollut Control Assoc,1979,29:255-257.

[42] Truex T J,Pierson W R,Mckee D E.Sulfate in diesel exhaust.Environ Sci Technol,1980,14:1118-1121.

[43] Jill E R,Oliver V R,Katharine F M,et al.Drop size-dependent S(Ⅳ)oxidation in chemically heterogeneous radiation fogs.Atmos Environ,2001,35:5717-5728.

[44] Ohta S,Okita T.A chemical characterization of atmospheric aerosol in Sapporo.Atmos Environ,1990,24A:815-822.

[45] Ariel F S,Lamb D.The sensitivity of sulfur wet deposition to atmospheric oxidants.Atmos Environ,2000,34:1681-1690.

[46] Sacoby M W,Marc L.Examination of atmospheric ammonia levels near hog CAFOs,homes,and schools in eastern North Carolina.Atmos Environ,2007,41:4977-4987.

[47] Sun Y,Zhuang G,Wang Y,et al.Chemical composition of dust storms in Beijing and implications for the mixing of mineral aerosol with pollution aerosol on the pathway.J Geophys Res,2005,110:D24209.doi:10.1029/2005JD006054.

[48] Zhang X Y,Zhuang G Y,Zhu G H,et al.Element tracers for Chinese source dust.Science in China(Series D),1996,39(5):512-521.

[49] Shen Z X,Cao J J,Li X X,et al.Chemical characteristics of aerosol particles(PM 2.5)at a site of Horqin Sand-land in Northeast China.Environmental Sciences-China,2006,18(4):701-707.

[50] Zhang D,Zang J,Shi G,et al.Mixture state of individual Asian dust particles at a coastal site of Qingdao,China.Atmos Environ,2003,37(28):3895-3901.

[51] Cao J J,Chow J C,Watson J G,et al.Size-differentiated source profiles for fugitive dust in the Chinese Loess Plateau.Atmos Environ,2008b,42(10):2261-2275.

【注释】

[1]MODIS:Moderate Resolution Imaging Spectroradiometer(中分辨率成像光谱仪),美国地球观测系统(Earth Observation System,EOS)系列卫星上最主要的仪器,是当前世界上新一代“图谱合一”的光学遥感仪器和被动式成像的分光辐射计。共有490个探测器、36个离散光谱波段。其光谱范围宽,从0.4μm(可见光)到14.4μm(热红外)全光谱覆盖。MODIS搭载在Terra和Aqua卫星上,两颗卫星相互配合,每1~2 d可重复观测整个地球表面,得到36个波段的观测数据。MODIS消防监测的理论基础是根据着火点比周围温度高来判断火点,其判断基础是热辐射强度与温度和波长的关系。MODIS的多波段数据可以同时提供反映陆地表面状况、云边界、云特性、海洋水色、浮游植物、生物地理化学、大气中水汽、气溶胶、地表温度、云顶温度、大气温度、O3和云顶高度等的特征信息。参见473页脚注**。**参见473页脚注*。

[2]*MODIS:Moderate Resolution Imaging Spectroradiometer(中分辨率成像光谱仪),美国地球观测系统(Earth Observation System,EOS)系列卫星上最主要的仪器,是当前世界上新一代“图谱合一”的光学遥感仪器和被动式成像的分光辐射计。共有490个探测器、36个离散光谱波段。其光谱范围宽,从0.4μm(可见光)到14.4μm(热红外)全光谱覆盖。MODIS搭载在Terra和Aqua卫星上,两颗卫星相互配合,每1~2 d可重复观测整个地球表面,得到36个波段的观测数据。MODIS消防监测的理论基础是根据着火点比周围温度高来判断火点,其判断基础是热辐射强度与温度和波长的关系。MODIS的多波段数据可以同时提供反映陆地表面状况、云边界、云特性、海洋水色、浮游植物、生物地理、化学、大气中水汽、气溶胶、地表温度、云顶温度、大气温度、O3和云顶高度等的特征信息。参见473页脚注**。**参见473页脚注*。

[3]参见397页脚注*。

[4]wt%指重量百分比

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈