首页 理论教育 电力系统发展与面临挑战

电力系统发展与面临挑战

时间:2023-06-22 理论教育 版权反馈
【摘要】:电能的利用是人类进步与发展的重要标志。1891年,第一条三相交流输电线路在德国投入运行,从拉芬镇到法兰克福全程178km,电压为15.2kV,输送功率为200kW,从此以后,三相交流输电很快取代了直流输电,成为电力系统大发展的里程碑。电力在能源转换利用体系中将发挥愈来愈重要的作用。其中,基于全控电力电子器件的柔性输电技术取得了长足的进步和发展。

电力系统发展与面临挑战

电能的利用是人类进步与发展的重要标志。如今,电能已成为现代科技经济建设社会文明和人们的日常生活不可或缺的主要能源形式。追溯电力工业的发展历程可以了解到,电力生产、传输和分配使用形成系统概念已有100多年。1882年,爱迪生电力照明公司在美国纽约主持建造了世界第一个完整的直流电力系统,包括6台12kW直流发电机,用110V电压将电力线连接成网络为6000盏电灯供电。同一时期在我国,外商集资创办成立了商业化运营的上海电光公司,为城市照明提供直流电力。电能开始进入人类生产和生活领域。1889年,第一条单相交流输电线路在美国俄勒冈州的维拉姆特瀑布和波特兰之间建成并投运,输电电压为4kV,距离为21km。1891年,第一条三相交流输电线路在德国投入运行,从拉芬镇到法兰克福全程178km,电压为15.2kV,输送功率为200kW,从此以后,三相交流输电很快取代了直流输电,成为电力系统大发展的里程碑。

100多年来,随着世界工农业生产和社会经济的快速发展,对能源的需求,尤其是对电力能源的需求急剧增加,这极大地推动了电力系统规模的持续扩张和电力科技水平的不断提高。时至今日,现代电力系统在保持传统电力系统以生产、输送和分配使用三相正弦形式交流电力为主的基本特征之外,其突出的变化是以大机组、大电网、高电压和高度自动化为特点,在一些国家或地域已经形成一个大容量、长距离、跨区/跨国电网互联、交直流混合输电的巨大人造动力学系统。

电能具有清洁实用以及便于传输、转换和控制的特点,并且由于电力生产是一次能源实现清洁转化利用的重要途径,能源消耗形式越来越多地向电力能源转移,统计数据表明,电能在能源总体消耗中的比重在不断提高,我国发电能源占一次能源消费比重将从目前的40%提高到约50%。从世界范围的能源危机来讲,化石能源的日益枯竭使人类面临着新能源的开发利用和节能增效的社会约束,到2020年,全世界非化石能源利用总量占一次能源消费比重将达到15%,其中转化为电力的非化石能源占84%。电力在能源转换利用体系中将发挥愈来愈重要的作用。另一方面,提高电能在终端用户消费中的比重同样是降低总能源消耗的一个重要途径。数据分析表明,“十二五”期间,电力消耗占一次能源消耗的比重上升1%,单位GDP能耗将下降3%左右。可以看出,利用电力驱动(如电力机车、电驱动船舶电动汽车等)取代其他形式的动力驱动已经形成趋势,越来越多的领域更加广泛地实现着电气自动化。电气化水平的提升可以明显地提高能源综合利用效率,有利于能源消费总量控制目标的实现。有数据显示,到2020年,我国电能占终端消费能源比重有望从目前的21%提高到27%左右,2030年进一步提高到30%左右,将成为我国第一大终端消费能源[1]

随着我国国民经济持续稳步发展和对能源的巨大需求,我国电力工业建设在近几十年里增长速度名列世界前茅,取得了前所未有的辉煌成就。在传统发电和新能源发电能力方面,国家能源局发布的最新数据显示,到2012年底,全国电力装机容量达到11.4亿kW,这标志着我国已经成为世界第一电力能源生产大国。其中,水电装机容量达到2.49亿kW,居世界第一。风电装机容量迅速增加到6300万kW,成为世界第一风电大国,年发电量超过1000亿kWh。光伏发电装机容量由基本空白增加到700万kW。核电在建机组30台,共3273万kW,在建规模居世界第一。到2020年仅就风电而言,“三北”(华北、西北、东北)地区6个大型风电基地开发规模有望达到1.5亿kW。

在电力输送和电网建设方面,系统运行电压等级不断提高,网络规模也不断扩大,全国已经形成了东北电网、华北电网、华中电网、华东电网、西北电网和南方电网6个跨省的大型区域电网和电网间的互联。例如,我国第一个背靠背直流输电工程灵宝直流背靠背换流站,额定直流功率为360MW,可双向输送,将西北330kV电网和华中220kV电网非同步互联。我国东北—华北(高岭)500kV直流背靠背工程扩建输送能力达到3000MW,成为目前世界上单个换流容量最大的直流背靠背工程;另外,针对能源储备与转换和能源消费地域的严重不平衡,我国还将逐渐形成完整的、长距离输电的、跨大区源网协同的网架结构。在这方面已经投入商业运行的±800kV直流输电线路三回:①云南—广州特高压直流输电工程,额定输送容量为5000MW,直流线路全长1438km,是我国建成的第一条特高压直流输电工程;②向家坝—上海特高压直流输电示范工程,额定输送容量为6400MW,直流线路全长1907km;③新建的西电东送锦屏—苏州南特高压直流输电工程,额定输送容量为7200MW,直流线路全长2059km,是目前世界上输送容量最大、送电距离最远、电压等级最高的直流输电工程之一,代表了当前世界直流输电技术的最高水平。计划2015年至2020年,国家电网公司将逐步形成“两纵两横”、“五纵五横”的1000kV特高压交流同步网架结构,以及20多条±800kV及以上的特高压直流输电骨干通道,连接“三北”的各大型煤电基地、水电基地、核电基地、可再生能源基地和以“三华”(华东、华中、华北)电网为主要受端的负荷中心,逐步建成交直流混合输电、各级电网协调发展、清洁安全、稳定可靠的网络平台。

需要强调,以电力电子器件的研发、功率换流器及连接设备等制造水平和应用技术的进步为基础,极大地提高了输配电系统的灵活性。其中,基于全控电力电子器件的柔性输电技术取得了长足的进步和发展。利用柔性输电技术可以在进行精确有功功率控制的同时对无功功率进行双向控制。而且柔性直流换流站可工作在无源换流的方式下,不需要外加的换相电压,可用于弱系统或无源系统供电;柔性直流输电技术基本不需要滤波和无功补偿装置,其换流站占地面积较同等容量的常规直流换流站要小,为交流系统提供快速动态的电压支撑,控制更加灵活,可大大提高供电可靠性。2011年我国首个柔性直流输电工程——上海南汇风电场柔性直流输电示范工程投运,输送容量为18MW,电压等级为±30kV;世界上第一个五端柔性直流输电工程——舟山多端柔性直流输电重大科技示范工程即将实施,将在舟山北部主要岛屿间建设五座百兆瓦级换流站,加强诸岛之间的直流电气联系,提高供电可靠性,为就地分布式风能太阳能等清洁能源利用奠定基础;世界上容量最大的柔性直流输电工程方案正在我国逐步落实,直流输送容量为1000MVA,直流电压为±320kV,用于解决跨城区电网增容及电力供应问题。(www.xing528.com)

综上所述,电力系统的发展内涵在不断丰富,它不仅包括满足生产和输送电力的主网络基本概念,还包括将电力流、信息流、管理流三者密切结合的现代互联大系统。其中突出表现为,充分利用先进的电力电子技术和广域信息技术,使原来基本不可控的电力系统转变为更加快速、准确和灵活控制的电力系统。近年来,在电力系统中“柔性交流输电系统(FACTS)”得到了迅速发展和大量应用,基于电力变换的静止无功补偿器(SVC)、晶闸管控制串联电容器(TCSC)、静止同步补偿器(STATCOM)等多种串并联形式的FACTS装置有效地提高了电力系统灵活控制能力。并且在将广域相位测量技术(PMU/WAMS)与FACTS装置相结合后,电力系统稳定控制进入了大电网协调最优控制新时代

我们应当认识到,电力电子技术在增强了电力系统可控性、灵活性的同时,也带来了新的电力扰动问题,例如,高压直流输电(HVDC)以及各种功率控制器的快速电力调节,造成系统阻尼能力发生变化或被削弱,由此引起机电耦合相互作用和产生系统次同步振荡(SSO)问题,从而可能导致大型汽轮发电机组的轴系扭振;另外,实现快速功率调节控制的电力电子装置之间的相互操控作用也愈加复杂起来,其影响将波及发电系统的安全稳定运行,近年来在国外文献中已经有关于双馈感应风机换流器控制与串联补偿线路之间次同步振荡问题的研究报道。

众所周知,电力系统正常运行以安全稳定为前提条件,以连续优质供应电力为其基本保证。随着科技的进步和事物不断地发展变化,虽然电力工业生产过程以及电力系统运行会提出许多新问题,但是就其物理本质和运动规律来看,动态系统的安全稳定依然是永恒的主题。当电网结构更加复杂,源网之间的耦合作用与影响更加紧密时,大电网和大型发电机组的安全稳定可靠运行问题会变得更加突出,系统失稳造成的损失将会是巨大的。如何应对系统在错综复杂的扰动下保证稳定运行仍然是重大的研究课题。变化中的电力系统将呈现出许多新现象、新问题,与此同时新概念、新思想、新方法也会不断涌现,电力系统稳定分析与控制研究领域将面临新的挑战。

进入21世纪以来,国际经济形势、能源形势发生了深刻变化,新一轮世界能源变革拉开了序幕,从发展清洁能源、保护生态环境、应对气候变化、保障能源安全、促进经济增长等需要出发,世界各国纷纷提出发展智能电网,智能电网已经成为全球电力行业研究和探讨的热点,成为了新世纪电力系统与电力产业发展的时代标签。

智能电网更加关注信息化、互动性和自愈性以及电力输送技术与通信、控制等技术的融合和基础设施建设,尽管如此,电力的高效转换、灵活传输、可靠供给仍然是电力系统的基础核心任务,电力系统的安全稳定和可靠运行的基本要求不会改变。随着智能电网建设的深入发展,无论是规模化或分布式新能源的传输与消纳,还是在应对电力扰动的耐受性和免疫力的提高上,对电力系统稳定性、安全性会提出更新的标准和要求。只有不断深入研究新条件下电力系统的现象机理和动态特性,不断丰富和完善电力系统稳定分析与控制的理论与方法,才能切实保障和促进智能电网的发展。可以说,高水平的电力系统安全稳定运行与控制是智能电网顺利发展的重要基石。

免责声明:以上内容源自网络,版权归原作者所有,如有侵犯您的原创版权请告知,我们将尽快删除相关内容。

我要反馈